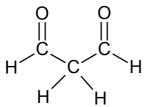
# CHEMISTRY: ART, SCIENCE, FUN



# THEORETICAL EXAMINATION ANSWER SHEETS

JULY 20, 2007 MOSCOW, RUSSIA

| Problem | Name:         | Quest. | 1.1 | 1.2 | 2.1 | 3.1 | 3.2 | 3.3 | 3.4 | Tot  | Points |
|---------|---------------|--------|-----|-----|-----|-----|-----|-----|-----|------|--------|
| 1       | Student code: | Marks  | 3   | 3   | 2   | 4.5 | 2   | 4   | 6   | 24.5 | 7      |


### 1.1.1 構造

プロパンジアール (Propanedial)

1つ目の異性体

2つ目の異性体

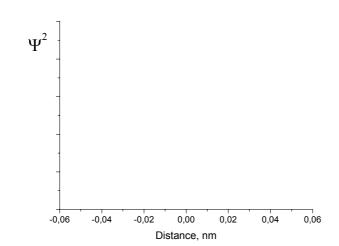
1.1.2 酸性を示す水素原子を丸印で囲みなさい。



プロパンジアールの酸性度はどの理由によってもたらされるか。

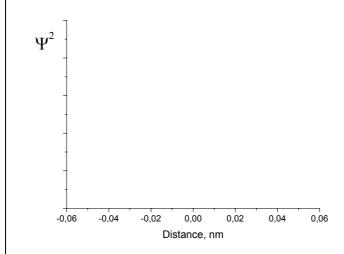
- a) 2つのカルボニル基の共役によるカルボアニオンの安定化
- b) カルボニル基の C-H 結合の弱さ
- c) 2つのプロパンジアール分子間の水素結合の形成

正解は


1.2.1 エネルギー曲線の二つの極小値に相当する構造

|  | 1 |
|--|---|

| Problem | Name:         | Quest. | 1.1 | 1.2 | 2.1 | 3.1 | 3.2 | 3.3 | 3.4 | Tot  | Points |
|---------|---------------|--------|-----|-----|-----|-----|-----|-----|-----|------|--------|
| 1       | Student code: | Marks  | 3   | 3   | 2   | 4.5 | 2   | 4   | 6   | 24.5 | 7      |

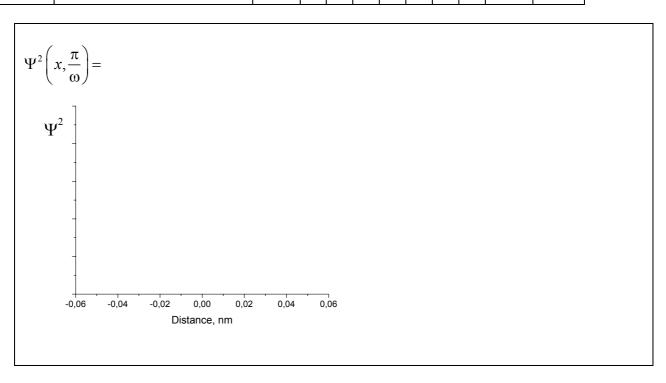

### 1.3.1 確率密度

| (a) $t = 0$     |  |  |  |
|-----------------|--|--|--|
| $\Psi^2(x,0) =$ |  |  |  |
|                 |  |  |  |



(b) 
$$t = \pi/(2\omega)$$

$$\Psi^2\left(x,\frac{\pi}{2\omega}\right) =$$




(c)  $t = \pi/\omega$ 

Problem 1

 Name:
 Quest.
 1.1
 1.2
 2.1
 3.1
 3.2
 3.3
 3.4
 Tot
 Points

 Student code:
 Marks
 3
 3
 2
 4.5
 2
 4
 6
 24.5
 7



1.3.2

左の井戸の中にプロトンを見出す確率 = \_\_\_\_\_

1.3.3 プロトン移動の時間

計算式

t =

プロトンの平均の速さ

計算式

v =

1.3.4 プロトンの位置の不確かさ

 $\Delta x =$ 

| Problem | Name:         | Quest. | 1.1 | 1.2 | 2.1 | 3.1 | 3.2 | 3.3 | 3.4 | Tot  | Points |
|---------|---------------|--------|-----|-----|-----|-----|-----|-----|-----|------|--------|
| 1       | Student code: | Marks  | 3   | 3   | 2   | 4.5 | 2   | 4   | 6   | 24.5 | 7      |

### プロトンの凍さの最小不確かさ

| TO ONE CONTINUE OF CONTINUE OR |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 計算式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $\Delta v =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

- a) プロトンはむしろ重い素粒子といえ, マロンアルデヒドでのトンネル現象は古 典的な位置と速度の関係式で記述される。
- b) プロトントンネル現象は純粋に量子論的であり、古典的な手段では記述できない。
- c) プロトンの速さの不確かさは非常に大きいため、トンネル現象は実験的には観察されない。
- d) プロトンの速さの不確かさは非常に小さいため、トンネル現象は実験的には観察されない。

| 正解は |
|-----|
|-----|

| Problem | Name:         | Quest. | 1.1 | 1.2 | 2.1 | 2.2 | 3.1 | 3.2 | 3.3 | 3.4 | 3.5 | Tot | Points |
|---------|---------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|
| 2       | Student code: | Marks  | 1   | 2   | 4   | 2   | 1   | 5   | 2   | 3   | 2   | 22  | 8      |

**2.1.1** 反応式(1)についての熱力学的データ: 計算式

$$\Delta_{\rm r}G^0(1) =$$

K =

**2.1.2** *コバルトナノ粒子を用いたときの(1)の反応の平衡定数* 計算式

(a) 
$$K(r = 10^{-8} \text{ m}) =$$

(b) 
$$K (r = 10^{-9} \text{ m}) =$$

| Problem | Name:         | Quest. | 1.1 | 1.2 | 2.1 | 2.2 | 3.1 | 3.2 | 3.3 | 3.4 | 3.5 | Tot | Points |
|---------|---------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|
| 2       | Student code: | Marks  | 1   | 2   | 4   | 2   | 1   | 5   | 2   | 3   | 2   | 22  | 8      |

| 2.2.1 | 混合物における最小の水の含有量 |
|-------|-----------------|
| 計算式   | <u>.</u><br>V   |

- (a) H<sub>2</sub>O% (Co のバルク層) =
- (b)  $H_2O\%$  (ナノ粒子,  $r = 1.10^{-9}$  m) =
- 2.2.2 正解は(適切なボックスにチェックを入れなさい)

  - (a) (b)
- (c)
- **2.3.1** CoO の標準モルギブズ関数の式,外側の層 (external layer)

 $G^0(\text{CoO}, r_b) =$ 

**2.3.2** Co の標準モルギブズ関数の式,内側の層 (internal layer)

 $G^{0}(Co, r_{a}, r_{b}) =$ 

2.3.3 二層構造のナノ粒子における,反応(1)の標準ギブズエネルギー

 $\Delta_{\rm r}G^0(1,r_{\rm a},r_{\rm b}) =$ 

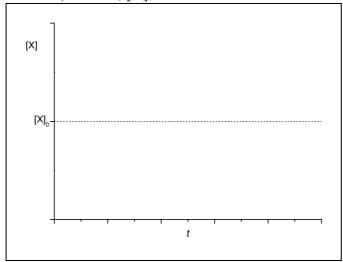
 Problem
 Name:
 Quest.
 1.1
 1.2
 2.1
 2.2
 3.1
 3.2
 3.3
 3.4
 3.5
 Tot
 Points

 Marks
 1
 2
 4
 2
 1
 5
 2
 3
 2
 22
 8

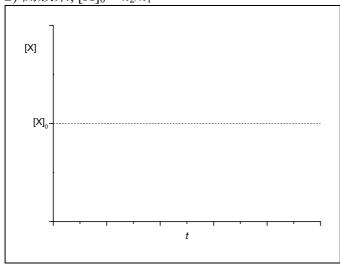
正しくプロットされたものを選び、マークしなさい

- (a)
- (b)
- (c)
- (d)

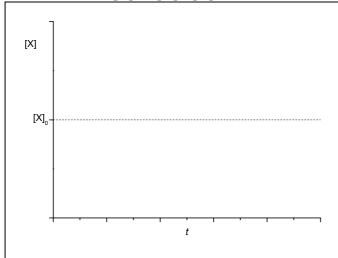
2.3.5 正しいものを選び、マークしなさい


- (a)
- (b)
- (c)

| Probl | em                   | Name:                 | Quest. | 1.1 | 1.2 | 2.1 | 2.2 | 3.1 | 4.1 | Tot  | Points |
|-------|----------------------|-----------------------|--------|-----|-----|-----|-----|-----|-----|------|--------|
| 3     |                      | Student code:         | Marks  | 2   | 4.5 | 4   | 3   | 3   | 3   | 19.5 | 7      |
|       | 3.1.1                | 全体の反応式                |        |     |     |     |     |     |     |      |        |
|       | $\frac{X / C}{d[X]}$ | ついての反応速度式<br>-=       |        |     |     |     |     |     |     |      |        |
|       |                      |                       |        |     |     |     |     |     |     |      |        |
|       | 計算                   |                       |        |     |     |     |     |     |     |      |        |
|       | $\frac{d[P]}{dt}$    | =                     |        |     |     |     |     |     |     |      |        |
| _     | 反応                   | 次数                    |        |     |     |     |     |     |     |      |        |
|       |                      | 関して (i):<br>関して (ii): |        |     |     |     |     |     |     |      |        |


全体 (iii): \_\_\_\_\_

| Problem | Name:         | Quest. | 1.1 | 1.2 | 2.1 | 2.2 | 3.1 | 4.1 | Tot  | Points |
|---------|---------------|--------|-----|-----|-----|-----|-----|-----|------|--------|
| 3       | Student code: | Marks  | 2   | 4.5 | 4   | 3   | 3   | 3   | 19.5 | 7      |


**3.2.1** 1) *開放系*, [X]<sub>0</sub> > k<sub>2</sub>/k<sub>1</sub>



2) *開放系*, [X]<sub>0</sub> < k<sub>2</sub>/k<sub>1</sub>



**3.2.2** 閉鎖系, [B]<sub>0</sub> = [D]<sub>0</sub>, [X]<sub>0</sub> > k<sub>2</sub>/k<sub>1</sub>



| Problem | Name:         | Quest. | 1.1 | 1.2 | 2.1 | 2.2 | 3.1 | 4.1 | Tot  | Points |
|---------|---------------|--------|-----|-----|-----|-----|-----|-----|------|--------|
| 3       | Student code: | Marks  | 2   | 4.5 | 4   | 3   | 3   | 3   | 19.5 | 7      |

### 3.3.1

 $X - Y - P - C_2H_6 + X + \dots \rightarrow 2X$   $X + Y \rightarrow 2Y + \dots$   $C_2H_6 + Y + \dots \rightarrow 2P$ 

## 3.4.1 もっとも高い温度

| 計算式 |  |  |
|-----|--|--|
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
| T = |  |  |

| Problem | Name:         | Quest. | 1 | 2.1  | 2.2  | 2.3  | 3 | 4.1 | 4.2 | 4.3  | Tot  | Points |
|---------|---------------|--------|---|------|------|------|---|-----|-----|------|------|--------|
| 4       | Student code: | Marks  | 1 | 1.25 | 1.75 | 2.25 | 1 | 2   | 1   | 2.25 | 12.5 | 8      |

| 4.1 化学量論式                  |            |
|----------------------------|------------|
|                            |            |
| <b>4.2.1</b> <i>T値の計算</i>  |            |
| 計算式                        |            |
|                            |            |
| T =                        | _mg/mL     |
|                            |            |
| <b>4.2.2</b> <i>T 値の計算</i> |            |
| 計算式                        |            |
|                            |            |
| T =                        | $_{mg/mL}$ |
|                            |            |
| <b>4.2.3</b> <i>T 値の計算</i> |            |
| 計算式                        |            |
|                            |            |
| T =                        | _ mg/mL    |

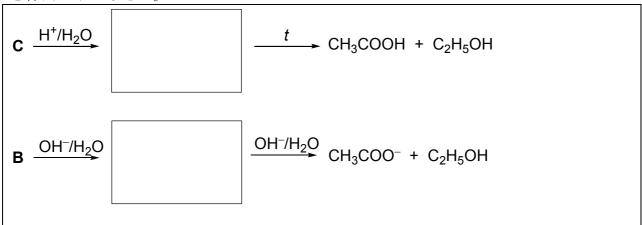
| Problem | Name:         | Quest. | 1 | 2.1  | 2.2  | 2.3  | 3 | 4.1 | 4.2 | 4.3  | Tot  | Points |
|---------|---------------|--------|---|------|------|------|---|-----|-----|------|------|--------|
| 4       | Student code: | Marks  | 1 | 1.25 | 1.75 | 2.25 | 1 | 2   | 1   | 2.25 | 12.5 | 8      |

| 4.3 反応式(Equation(s))                       |  |
|--------------------------------------------|--|
|                                            |  |
|                                            |  |
| 4.4.1 反応式                                  |  |
| <b>7.7.1</b>                               |  |
|                                            |  |
|                                            |  |
| 4.4.2 反応式                                  |  |
|                                            |  |
|                                            |  |
| 4.4.3 結晶性水和物の組成                            |  |
| 計算式                                        |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
| 塩の組成式, $Fe_2(SO_4)_3$ · $xH_2O$ ; $x = $ _ |  |

| 5                   | Stud                               | ent code:            |      | Marks | 5   | 5  | 10         | 30  | 10    | 10  | 5   | 75  | 7.5  |     |
|---------------------|------------------------------------|----------------------|------|-------|-----|----|------------|-----|-------|-----|-----|-----|------|-----|
| 5.1.1               | <b>D</b> Ø                         | 構造                   |      |       |     | 7  |            |     |       |     |     |     |      |     |
|                     |                                    |                      |      |       |     |    |            |     |       |     |     |     |      |     |
| <b>5.1.2</b><br>クを  | <i>化合</i><br>入れな                   | 物 <b>D</b> はどの<br>さい | ような種 | 有機化合  | 合物和 | 学に | 分類         | され  | るか    | 。遃  | 切な  | はボッ | クスにき | チェッ |
| <u>注意</u>           | ! F                                | エックは一つ               | つのみと | する。   | 複数  | かり | 類に         | ニチュ | = ツ / | クレア | た場  | 合は0 | 点とな  | る。  |
| ケ                   | トン                                 | エーテル                 | アセタ  | ール    | エス  | テル | · ·        | アル  | コー    | ン   | アル  | デヒト | グリ:  | コール |
|                     |                                    |                      |      |       | [   |    |            |     |       |     |     |     |      |     |
| 5.1.3               | $\boldsymbol{D}$ $\mathcal{O}_{i}$ | 収率の予想値               | Ī    |       |     |    |            |     |       |     |     |     |      |     |
|                     |                                    | ようど85%で              |      | ; 85% | より  | 低い | □ <i>;</i> | 85% | 6より   | 高り  | ) 🔲 |     |      |     |
| 計算:                 | <del></del>                        |                      |      |       |     |    |            |     |       |     |     |     |      |     |
| рт <del>Э/-</del> , |                                    |                      |      |       |     |    |            |     |       |     |     |     |      |     |
|                     |                                    |                      |      |       |     |    |            |     |       |     |     |     |      |     |
|                     |                                    |                      |      |       |     |    |            |     |       |     |     |     |      |     |
| 収率                  | =                                  | %                    |      |       |     |    |            |     |       |     |     |     |      |     |
| 5.2.1               | A, B,                              | , <i>C の構造</i>       |      |       |     |    |            |     |       |     |     |     |      |     |
|                     |                                    |                      |      |       |     |    |            |     |       |     |     |     |      |     |
|                     |                                    |                      |      |       |     |    |            |     |       |     |     |     |      |     |
|                     |                                    |                      |      |       |     |    |            |     |       |     |     |     |      |     |
|                     |                                    |                      |      |       |     |    |            |     |       |     |     |     |      |     |
|                     |                                    |                      |      |       |     |    |            |     |       |     |     |     |      |     |
|                     |                                    |                      |      |       |     |    |            |     |       |     |     |     |      |     |
|                     |                                    | $\boldsymbol{A}$     |      |       |     | В  |            |     |       |     |     | (   | 7    |     |

Quest. | 1.1 | 1.2 | 1.3 | 2.1 | 2.2 | 3.1 | 3.2 |

Problem


Name: \_\_

Tot

Points

| Problem | Name:         | Quest. | 1.1 | 1.2 | 1.3 | 2.1 | 2.2 | 3.1 | 3.2 | Tot | Points |
|---------|---------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|--------|
| 5       | Student code: | Marks  | 5   | 5   | 10  | 30  | 10  | 10  | 5   | 75  | 7.5    |

**5.2.2** C の酸による加水分解とB の塩基による加水分解の際に生成する中間体の構造を枠内に示しなさい。



| 5.3.1 | senecioic acid の構造および, | SA のナトリウム塩を与える一連の反応式(scheme) |
|-------|------------------------|------------------------------|
|       |                        |                              |
|       |                        |                              |
|       |                        |                              |
|       |                        |                              |
|       |                        |                              |
|       |                        |                              |
|       |                        |                              |
|       |                        |                              |
|       |                        |                              |

| 5.3.2 | <b>E</b> の構造 |
|-------|--------------|
|       |              |
|       |              |
|       |              |
|       |              |
|       |              |

| roblem       | Name:                                                                                      | Quest.           | 1.1          | 1.2                                    | 2.1      | 2.2            | 2.3           | 2.4       | 3.1         | 3.2              | Tot              | Points |      |
|--------------|--------------------------------------------------------------------------------------------|------------------|--------------|----------------------------------------|----------|----------------|---------------|-----------|-------------|------------------|------------------|--------|------|
| 6            | Student code:                                                                              | Marks            | 3            | 9                                      | 2        | 2              | 3             | 10        | 5           | 3                | 37               | 7      |      |
| 6.1.1        | LGL が空気中で固まるこ                                                                              | とを説              | 明す           | _ <i>る3</i>                            | 全体       | のイ             | <i>'</i> \ta' | ン反        | 広司          | v                |                  |        |      |
|              |                                                                                            |                  |              |                                        |          |                |               |           |             |                  |                  |        |      |
| (12          | まに切光! マキフプロー                                                                               | <b>レッファ</b>      | 54-          | ナフ                                     | <u> </u> | <del>L</del> Ø | 14            | - ) / E   | <del></del> | <u>+</u> +       | , <del>ま</del> 七 | カチハ    | 7. h |
|              | 表に列挙してあるプロで<br>のプロセスについて,pH 』<br>れなさい。そうでなけれは                                              | 変化をも             | たり           | うす                                     | よう       | · Ca           | あれ            | ば"        | Yes'        | 'のな              | ドック              |        |      |
|              | ルトケイ酸イオンがプロト                                                                               |                  |              |                                        |          |                |               |           |             |                  |                  |        |      |
|              |                                                                                            |                  |              |                                        |          |                |               |           |             |                  | Yes              | □ N    | o 🗌  |
| b) 水<br>反応   | 和した [SiO <sub>4</sub> (H <sub>2</sub> O) <sub>2</sub> ] <sup>4-</sup> 陰イ <sup>、</sup><br>式 | オンが生             | 成            |                                        |          |                |               |           |             |                  |                  |        |      |
|              |                                                                                            |                  |              |                                        |          |                | -             |           |             |                  | Yes              | □ N    | o 🗌  |
| c) オ<br>  反応 | ルトケイ酸イオンが重縮合<br>式                                                                          | して Si-           | -O-S         | li 結                                   | 合が       | 生品             | 戉             |           |             |                  |                  |        |      |
|              |                                                                                            |                  |              |                                        |          |                |               |           |             |                  | Yes              | N      | o 🗌  |
| 6.2<br>6.2.1 | ケイ酸塩水溶液中に見出さ<br>電荷(n)の決定                                                                   | キれる[S            | i3O9j        | 7 <sup>n-</sup> ∕                      | /才、      | ンに             | 関             | ナる。       | 設問          | 7                |                  |        |      |
| 理由           |                                                                                            |                  |              |                                        |          |                |               |           |             |                  |                  |        |      |
|              |                                                                                            |                  |              |                                        |          |                |               |           |             |                  |                  |        |      |
|              |                                                                                            |                  |              |                                        |          |                |               |           |             |                  |                  |        |      |
| 6.2.2        |                                                                                            | 月を架橋             | 1.7          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 5 西谷-    | 麦原             | i子()          | つ数        | DΉ          | 定                |                  | n = _  |      |
| 理由           | (計算式)                                                                                      |                  |              |                                        | , ,,,,   | -1.///         |               | - 200     |             | .,,,             |                  |        |      |
|              |                                                                                            |                  |              |                                        |          |                |               |           |             |                  |                  |        |      |
|              |                                                                                            |                  |              |                                        |          |                |               |           |             |                  |                  |        |      |
| (2.2         | ハノっよのエ冊エ仕生た                                                                                | <br>っと <i>せる</i> | - J- 1       | ムフ                                     | × 1.     |                | ~ ±           | 7 /       |             |                  |                  | の数=_   |      |
| 6.2.3        | いくつかの正四面体(1)を~                                                                             | ソなさ行             | <i>`1</i> )7 | 20                                     |          | (, (,          | いざ            | <u>01</u> | 1           | 20) <sub>:</sub> | <i>博垣</i>        |        |      |
|              |                                                                                            |                  |              |                                        |          |                |               |           |             |                  |                  |        |      |
|              |                                                                                            |                  |              |                                        |          |                |               |           |             |                  |                  |        |      |
|              |                                                                                            |                  |              |                                        |          |                |               |           |             |                  |                  |        |      |
|              |                                                                                            |                  |              |                                        |          |                |               |           |             |                  |                  |        |      |

Quest. | 1.1 | 1.2 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 3.2 | Tot

Points

Official version team of Japan.

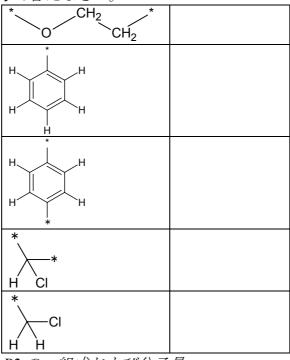
| Problem | Name:                      | Quest. | 1.1 | 1.2          | 2.1       | 2.2           | 2.3 | 2.4 | 3.1        | 3.2 | Tot | Points |  |
|---------|----------------------------|--------|-----|--------------|-----------|---------------|-----|-----|------------|-----|-----|--------|--|
| 6       | Student code:              | Marks  | 3   | 9            | 2         | 2             | 3   | 10  | 5          | 3   | 37  | 7      |  |
| 6.2.4   | ( )                        | なぎ合れ   | つせ。 | るこ           | とて        | でで            | きる  | 層状  | <i>代構。</i> | 造の  | 一部  |        |  |
| 理由      | (計算式)                      |        |     |              |           |               |     |     |            |     |     |        |  |
|         |                            |        |     |              |           |               |     |     |            |     |     |        |  |
| 構造      |                            |        |     |              |           |               |     |     |            |     |     |        |  |
|         |                            |        |     |              |           |               |     |     |            |     |     |        |  |
|         |                            |        |     |              |           |               |     |     |            |     |     |        |  |
|         |                            |        |     |              |           |               |     |     |            |     |     |        |  |
|         |                            |        |     |              |           |               |     |     |            |     |     |        |  |
|         |                            |        |     |              |           |               |     |     |            |     |     |        |  |
|         |                            |        |     |              |           |               |     |     |            |     |     |        |  |
|         |                            |        |     |              |           |               |     |     |            |     |     |        |  |
| 6.3.1   |                            | рН     |     |              |           |               |     |     |            |     |     |        |  |
| 理由      | (計算式)                      |        |     |              |           |               |     |     |            |     |     |        |  |
|         |                            |        |     |              |           |               |     |     |            |     |     |        |  |
|         |                            |        |     |              |           |               |     |     |            |     |     | pH =   |  |
| 6.3.2   | CuSO <sub>4</sub> 水溶液とメタケイ | 酸ナト    | リウ  | <b>'</b> ム(1 | $LGL_{j}$ | ) <i>]</i> K} | 容液  | の間  |            | 反応  | 式   |        |  |
|         |                            |        |     |              |           |               |     |     |            |     |     |        |  |

| roblem     | Name:                                                                                             | Quest. | 1.1            | 1.2 | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | Tot  | Points |  |
|------------|---------------------------------------------------------------------------------------------------|--------|----------------|-----|-----|-----|-----|-----|-----|------|--------|--|
| 7          | Student code:                                                                                     | Marks  | 12             | 12  | 5   | 12  | 7   | 8.5 | 16  | 72.5 | 7.5    |  |
|            | 7.1.1 さまざまな反応の種類が下の表に記してある。HMG-CoA が IPP に代謝される際の<br>反応は全てリストされている。 E1 と E3 が触媒作用を示す反応の種類をそれぞれ選び, |        |                |     |     |     |     |     |     |      |        |  |
|            | 解答欄に数字で答えなさい。                                                                                     |        |                |     |     |     |     |     |     |      |        |  |
| No         |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
| 1.         |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
| 2.         | 脱炭酸                                                                                               |        |                |     |     |     |     |     |     |      |        |  |
| 3.         | 脱リン酸                                                                                              |        |                |     |     |     |     |     |     |      |        |  |
| 4.         | 4 電子還元                                                                                            |        |                |     |     |     |     |     |     |      |        |  |
| 5.         |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
| 6.         |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
| 7.         |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
| <u>(</u>   |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
| <b>E</b> 1 |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
| E2         |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
| <b>E3</b>  |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
| 7.2.1      | またはS) を示しなさい。  7.2.1 ジメチルスルフィドが還元剤として使われるとして, DAP のオゾン分解一還元的処理の全体の反応式を書きなさい。                      |        |                |     |     |     |     |     |     | -還元  |        |  |
| 7.2.2      | <b>7.2.2</b> Yの分子式を決定しなさい。                                                                        |        |                |     |     |     |     |     |     |      |        |  |
| 理由         |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
| 一          | (11 <del>31</del> 24)                                                                             |        |                |     |     |     |     |     |     |      |        |  |
|            |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
|            |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
|            |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
|            |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
|            |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
|            |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
|            |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
|            |                                                                                                   |        |                |     |     |     |     |     |     |      |        |  |
| 炭素         | 原子の数                                                                                              |        |                |     |     |     |     |     |     |      |        |  |
| 水麦         | 原子の数                                                                                              | 分子式    | <del>-</del> - |     |     |     |     |     |     |      |        |  |

| Problen                                                                                                                      | n Name:                                                        | Quest. | 1.1 | 1.2 | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | Tot  | Points |  |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------|-----|-----|-----|-----|-----|-----|-----|------|--------|--|
| 7                                                                                                                            | Student code:                                                  | Marks  | 12  | 12  | 5   | 12  | 7   | 8.5 | 16  | 72.5 | 7.5    |  |
|                                                                                                                              | 7.2.3       Y5 を得るのに必要な IPP と DAP 分子の数を求めなさい。         理由 (計算式) |        |     |     |     |     |     |     |     |      |        |  |
| IPI                                                                                                                          | IPP 分子の数 DAP 分子の数                                              |        |     |     |     |     |     |     |     |      |        |  |
| <b>7.2.4</b> カップリング反応の生成物のオゾン分解と還元的処理により Y1,Y2,およびリンを<br>含むもう一つの生成物が得られることがわかっているとして, IPP 分子と DAP 分子の<br>カップリング反応の生成物を描きなさい。 |                                                                |        |     |     |     |     |     |     |     |      |        |  |
|                                                                                                                              |                                                                |        |     |     |     |     |     |     |     |      |        |  |

7.2.5 Y4 と Y の構造式を立体化学がはっきり分かるように描きなさい。

| _ | <br>V // | 7/2 - | - 0 | <del>-/-</del> // | - 1 - 1 | // / | × / ( | - / / | <i>J</i> /v | 8 | <i>&gt;</i> , | 7ЩС | ,<br>6 | • 0 |              |
|---|----------|-------|-----|-------------------|---------|------|-------|-------|-------------|---|---------------|-----|--------|-----|--------------|
|   |          |       |     |                   |         |      |       |       |             |   |               |     |        |     |              |
|   |          |       |     |                   |         |      |       |       |             |   |               |     |        |     |              |
|   |          |       |     |                   |         |      |       |       |             |   |               |     |        |     |              |
|   |          |       |     |                   |         |      |       |       |             |   |               |     |        |     | <b>X74</b>   |
| Ļ |          |       |     |                   |         |      |       |       |             |   |               |     |        |     | <b>Y4</b>    |
|   |          |       |     |                   |         |      |       |       |             |   |               |     |        |     |              |
|   |          |       |     |                   |         |      |       |       |             |   |               |     |        |     |              |
|   |          |       |     |                   |         |      |       |       |             |   |               |     |        |     |              |
|   |          |       |     |                   |         |      |       |       |             |   |               |     |        |     |              |
|   |          |       |     |                   |         |      |       |       |             |   |               |     |        |     | $\mathbf{Y}$ |


| roblem             | Name:                               | Quest.    | 1.1 | 1.2                       | 2.1 | 2.2 | 2.3 | 3.1    | 3.2                | 3.3 | 3.4            | Tot  | Points |
|--------------------|-------------------------------------|-----------|-----|---------------------------|-----|-----|-----|--------|--------------------|-----|----------------|------|--------|
| 8                  | Student code:                       | Marks     | 8   | 9                         | 5   | 11  | 14  | 16.5   | 12                 | 10  | 13.5           | 99   | 8      |
| 8.1.1              | 反応速度を表す式                            |           |     |                           |     |     |     |        |                    |     |                |      |        |
| v <sub>act</sub> = |                                     |           |     | $\mathbf{v}_{\mathrm{p}}$ | ,=  |     |     |        |                    |     |                |      |        |
| V <sub>deact</sub> | =                                   |           |     | $\mathbf{v}_{t}$          | =   |     |     |        |                    |     |                |      |        |
| 8.1.2              | 次の記号を使って反応込                         | 東度の比      | 較紅  | <i>吉果。</i>                | を示  | しな  | ささい | · )。 · | <<,                | ≤,  | ≈,             | ≥ ,> | ·>     |
|                    | V <sub>deact</sub> V <sub>act</sub> |           |     |                           |     |     |     | V      | <sup>7</sup> deact | V   | √ <sub>t</sub> |      |        |
|                    | $V_{deact}$ $V_{p}$                 |           |     |                           |     |     |     |        |                    |     |                |      |        |
| 8.2.1              |                                     | <u>7.</u> |     | _                         |     |     |     |        |                    |     |                |      |        |
| 理由                 | (計算式)                               |           |     |                           |     |     |     |        |                    |     |                |      |        |
|                    |                                     |           |     |                           |     |     |     |        |                    |     |                |      |        |
|                    |                                     |           |     |                           |     |     |     |        |                    |     |                |      |        |
|                    |                                     |           |     |                           |     |     |     |        |                    |     |                |      |        |
| m =                |                                     |           |     |                           |     |     |     |        |                    |     |                |      |        |
| 8.2.2              |                                     | 度         |     |                           |     |     |     |        |                    |     |                |      |        |
| 理由                 | (計算式)                               |           |     |                           |     |     |     |        |                    |     |                |      |        |
|                    |                                     |           |     |                           |     |     |     |        |                    |     |                |      |        |
|                    |                                     |           |     |                           |     |     |     |        |                    |     |                |      |        |
|                    |                                     |           |     |                           |     |     |     |        |                    |     |                |      |        |
|                    |                                     |           |     |                           |     |     |     |        |                    |     |                |      |        |
| DD                 | _                                   |           |     |                           |     |     |     |        |                    |     |                |      |        |
| DP =               | •                                   |           |     |                           |     |     |     |        |                    |     |                |      |        |

| Problem | Name:         | Quest. | 1.1 | 1.2 | 2.1 | 2.2 | 2.3 | 3.1  | 3.2 | 3.3 | 3.4  | Tot | Points |
|---------|---------------|--------|-----|-----|-----|-----|-----|------|-----|-----|------|-----|--------|
| 8       | Student code: | Marks  | 8   | 9   | 5   | 11  | 14  | 16.5 | 12  | 10  | 13.5 | 99  | 8      |

8.2.3 得られたポリマーの構造

| , | - |             |   |  |  |  |
|---|---|-------------|---|--|--|--|
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   |             |   |  |  |  |
|   |   | V/2 - 1.1 2 | 1 |  |  |  |
|   |   |             |   |  |  |  |

**8.3.1** それぞれの部分構造に対応した  $^{1}H$  NMR のシグナルを左の欄から選び、対応する右の空欄に $a \sim g$  の記号で答えなさい。



8.3.2 共重合体P1とP2の、組成および分子量

| 理由(計算式)       | 理由(計算式)         |
|---------------|-----------------|
|               |                 |
|               |                 |
|               |                 |
|               |                 |
|               |                 |
|               |                 |
|               |                 |
|               |                 |
|               |                 |
|               |                 |
| n(C) = n(D) = | M(P1) = M(P2) = |

| Problem | Name:         | Quest. | 1.1 | 1.2 | 2.1 | 2.2 | 2.3 | 3.1  | 3.2 | 3.3 | 3.4  | Tot | Points |
|---------|---------------|--------|-----|-----|-----|-----|-----|------|-----|-----|------|-----|--------|
| 8       | Student code: | Marks  | 8   | 9   | 5   | 11  | 14  | 16.5 | 12  | 10  | 13.5 | 99  | 8      |
| 8.3.3   | 活性化反応として考える   | ス全て    | のた  | 示於  |     |     |     |      |     |     |      |     |        |

| 8.3.3. | 活性化反応として考えうる全ての反    |              |
|--------|---------------------|--------------|
| P1:    |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
| P2:    |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
| 8.3.4  | PI の構造およびP2 として考えうる | <i>構造の一つ</i> |
| P1:    |                     | P2:          |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |
|        |                     |              |