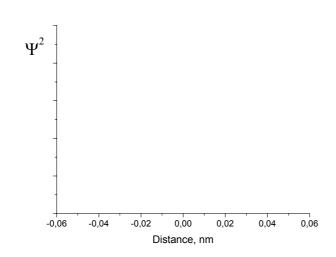
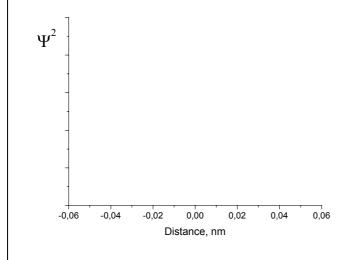
CHEMISTRY: ART, SCIENCE, FUN

THEORETICAL EXAMINATION ANSWER SHEETS


JULY 20, 2007 MOSCOW, RUSSIA

lem	Name:	Quest.	1.1	1.2	2.1	3.1	3.2	3.3	3.4	Tot	Points
-	Student code:	_ Marks	3	3	2	4.5	2	4	6	24.5	7
1.1.1	Structures:										7
Propa	anedial										
1 st iso	omer										
2 nd is	omer										
	Circle the acidic hydrogen of OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	sed by	ro co	mins	vatio	ın wi	ith ty	vo c	arbo	onyl gro	nuns
	b) weakness of C–H bone	d in a cart	ony	l gro	oup				uroc	, 1 610	м
The (c) hydrogen bonds betwe	en two pr	ораг	ican							

Problem	Name:	Quest.	1.1	1.2	2.1	3.1	3.2	3.3	3.4	Tot	Points
1	Student code:	Marks	3	3	2	4.5	2	4	6	24.5	7


1.3.1 The probability density
(a) t = 0

 $\Psi^2(x,0) =$

(b) $t = \pi/(2\omega)$

$$\Psi^2\left(x,\frac{\pi}{2\omega}\right) =$$

Problem
1

 Name:
 Quest.
 1.1
 1.2
 2.1
 3.1
 3.2
 3.3
 3.4
 Tot
 Points

 Student code:
 Marks
 3
 3
 2
 4.5
 2
 4
 6
 24.5
 7

$\Psi^{2}\left(x, \frac{\pi}{\omega}\right) = \Psi^{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ & & & & \\ & & & & \\ & & & &$	(c) $t = \pi/\omega$				
-0,06 -0,04 -0,02 0,00 0,02 0,04 0,06	$\Psi^2\left(x,\frac{\pi}{\omega}\right) =$				
	Ψ^2 $\bigg]$				
	-0,06 -0,04		0,06		

1.3.2

The probability of finding the proton in the left well = _____

1.3.3 *The time of proton transfer*

Your work:

t =

The proton mean speed

Your work:

v =

1.3.4 *The uncertainty of proton position*

 $\Delta x =$

Problem	Name:	Quest.	1.1	1.2	2.1	3.1	3.2	3.3	3.4	Tot	Points
1	Student code:	Marks	3	3	2	4.5	2	4	6	24.5	7

The minimal uncertainty of proton velocity

ne minimal uncertainty of proton vetocity
our work:
$N = \frac{1}{2}$
·······································

- a) Proton is a rather heavy particle, and its tunneling in malonaldehyde can be described in classical terms of position and velocity
- b) Proton tunneling is a purely quantum effect; it cannot be described in classical terms
- c) Uncertainty of proton velocity is so large that tunneling cannot be observed experimentally
- d) Uncertainty of proton velocity is so small that tunneling cannot be observed experimentally

			•	
I ha	aarraat	answer	10	
1110	COLLECT	answei	18	
1110	COLLECT	allo W Cl	10	

Problem	Name:	Quest.	1.1	1.2	2.1	2.2	3.1	3.2	3.3	3.4	3.5	Tot	Points
2	Student code:	Marks	1	2	4	2	1	5	2	3	2	22	8

2.1.1	Thermody	namic	data	for	the	reaction ((1):

Your work:

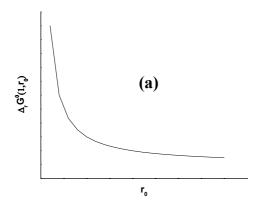
$$\Delta_{\rm r}G^0(1) =$$

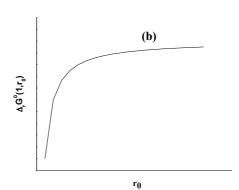
K =

2.1.2 Equilibrium constant for the reaction (1) with cobalt nanoparticles:

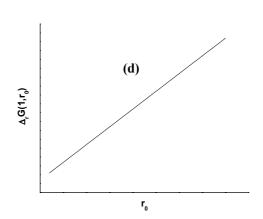
Your work:

(a)
$$K (r = 10^{-8} \text{ m}) =$$


(b)
$$K (r = 10^{-9} \text{ m}) =$$


Problem	Name:	Quest.	1.1	1.2	2.1	2.2	3.1	3.2	3.3	3.4	3.5	Tot	Points
2	Student code:	Marks	1	2	4	2	1	5	2	3	2	22	8

2.2.1 Minimum water content in the mixture: Your work:
(a) $H_2O\%$ (bulk Co) =
(b) $H_2O\%$ (nanoparticles with $r = 1 \cdot 10^{-9}$ m) =
2.2.2 The correct answer is (mark the proper box): (a) (b) (c)
2.3.1 Standard molar Gibbs function of CoO (external layer)
$G^0(ext{CoO}, r_{ ext{b}}) =$
2.3.2 Standard molar Gibbs function of Co (internal layer):
$G^0(\mathrm{Co},r_\mathrm{a},r_\mathrm{b})=$
2.3.3 Standard Gibbs energy for the reaction (1) with the double-layered nanoparticles
$\Delta_{\rm r} G^0(1,r_{\rm a},r_{\rm b}) =$


Quest. | 1.1 | 1.2 | 2.1 | 2.2 | 3.1 | 3.2 | 3.3 | 3.4 | 3.5 **Points** Name: _____ Tot Problem 2 Student code: Marks 2 2 5 2 2 8 1 3 22

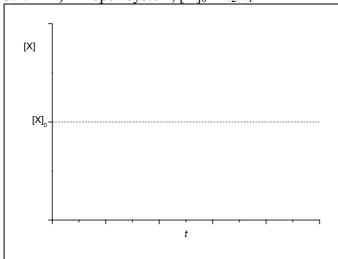
2.3.4. Plot $\Delta_{\rm r}G^0(1,r_0)$ vs. r_0

(c)

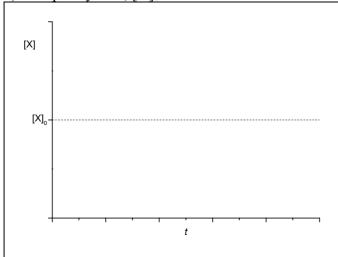
The correct plot is (mark the proper box):

- (a)
- (b)
- (c)
- (d)

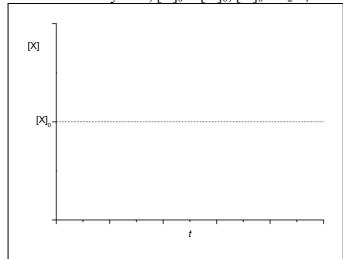
2.3.5 The correct answer is (mark the proper box):


- (a)
- (b)
- (c) ____

Problem	Name:	Quest.	1.1	1.2	2.1	2.2	3.1	4.1	Tot	Points
3	Student code:	Marks	2	4.5	4	3	3	3	19.5	7


3.1.1 The overall reaction equation
The kinetic equation for X
$\frac{d[X]}{dt} =$
3.1.2 The rate equation
Your work:
$\frac{d[P]}{d[P]} =$
$\frac{-t}{dt} =$
Reaction orders:
with respect to B (i):
with we went to D (ii).
with respect to D (ii):
overall (<i>iii</i>):
0 voidii (iii)

Problem	Name:	Quest.	1.1	1.2	2.1	2.2	3.1	4.1	Tot	Points
3	Student code:	Marks	2	4.5	4	3	3	3	19.5	7


3.2.1 1) An open system, $[X]_0 > k_2/k_1$

2) An open system, $[X]_0 < k_2/k_1$

3.2.2 A closed system, $[B]_0 = [D]_0$, $[X]_0 > k_2/k_1$

Problem	Name:	Quest.	1.1	1.2	2.1	2.2	3.1	4.1	Tot	Points
3	Student code:	Marks	2	4.5	4	3	3	3	19.5	7

3.3.1

X- Y- P- $C_{2}H_{6}+X+ ... \rightarrow 2X$ $X+Y \rightarrow 2Y+ ...$ $C_{2}H_{6}+Y+ ... \rightarrow 2P$

3.4.1 The highest possible temperature:

Your work:
T =

Problem	Name:	Quest.	1	2	3.1	3.2	3.3	4	5.1	5.2	5.3	Tot	Points
4	Student code:	Marks	1	1	1.25	1.75	2.25	1	2	1	2.25	13.5	8

4.1. Equation:
4.2.1. Calculation of the T value:
Your work:
$T = \underline{\qquad} mg/mL$
4.2.2. Calculation of the T value:
Your work:
Tour work.
$T = \underline{\qquad} mg/mL$
4.2.3. Calculation of the T value:
Your work:
T/I
$T = \underline{\qquad} mg/mL$

Problem	Name:	Quest.	1	2	3.1	3.2	3.3	4	5.1	5.2	5.3	Tot	Points
4	Student code:	Marks	1	1	1.25	1.75	2.25	1	2	1	2.25	13.5	8

A A 1 Equation(a):	
4.4.1 Equation(s):	
4.4.2. Equation:	
4.4.3. The composition of the crystallohydrate is:	
Your work:	
Formula of the salt $Fe_2(SO_4)_3$: xH_2O : $x = $	

Problem	Name:		Quest.	1.1	1.2	1.3	2.1	2.2	3.1	3.2	Tot	Points	
5	Student	code:	_ Marks	5	5	10	30	10	10	5	75	7.5	
5.1. Note ke 5.1. The You	2 Which classes Only one etones 3 The expective yield is equal to the expection of the exp	of product D ss of organic com checkmark is allo ethers ac	pounds do owed. Seve etals	pes D eral c es	belocheck ters	ong to	o? Ci ks wi alco	heck Il lea Dhols	the a	uppro 0 ma alde	priate	box. r this que	estion.
	A	1			В						C	7	
	2 Draw in the control of the contr	he boxes intermed s of B .	liate comp	ouna	ls for	med	durii	ng the	e aci	dic h	ydroly	vsis of C ,	and
C	H ⁺ /H ₂ O		1	<u> </u>	- CH	I ₃ CC	ЮН	+ (C ₂ H₅	ЮН			
В	OH⁻/H ₂ O		OH ⁻ /	′H ₂ C	CH	I ₃ CC)O ⁻	+ C	₂ H ₅ (ЭН			

Problem	Name:	Quest.	1.1	1.2	1.3	2.1	2.2	3.1	3.2	Tot	Points
5	Student code:	Marks	5	5	10	30	10	10	5	75	7.5

5.3.1 The structure of senecioic acid
5.3.2 The structure of E .

blem	Name:	Quest.	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2	Tot	Points	
6	Student code:	Marks	3	9	2	2	3	10	5	3	37	7	
6.1.1	The net ionic equation acc	counting for	the	abil	ity o	fLG	GL to	set	in a	ir			
	Write down the net ionic process check the "Yes" b												
a) pro	otonation of ortho-silicate ition equation:												
1 > 0		vv o> 74-	•								Yes	□ N	о 🗌
	rmation of hydrated [SiO ₄ () tion equation:	H ₂ O) ₂ ∫ anı	ions										
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		• • 1	1:		41	<u>C</u>			C G.	0.0	Yes		О
	lycondensation of ortho-sil tion equation:	icate ions le	eadii	ng to	the	torr	nati	on o	f S1	-0-8	Si bon	ds	
											Yes	□ N	o 🗌
	or [Si ₃ O ₉] ⁿ⁻ ion found in ac Determine the charge (n).		tion	of si	ilica	tes:							
	justification												
												n = _	
	Determine the number of of justification	oxygen aton	ıs bi	ridgi	ng a	ıdjac	cent	tetro	ahea	lra.			
	J												
							λ	Tumb	or o	for	vaan o	atoms = _	
										<i>j</i> Ολ)	vgen u	uoms _	
6.2.3	Depict the ion structure jo	ining togeth	her s	sevei	al te	etrak	hedr	a (1 ₎)				

Quest. | 1.1 | 1.2 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 3.2 | Tot

Points

Problem	Name:	Quest.	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2	Tot	Points
6	Student code:	Marks	3	9	2	2	3	10	5	3	37	7

6.2.4 The fragment of the layered structure joining 16 tetrahedra (1)
Your justification
Structure
6.3.1 pH of 0.1 M aqueous solution of copper sulfate
6.3.1 <i>pH of 0.1 M aqueous solution of copper sulfate</i> Your justification
J
pH =
P11
6.3.2 Equation of a reaction between aqueous solutions of CuSO ₄ and sodium metasilicate (LGL)
2002 Equation of a reaction between aqueous solutions of Caso4 and solution metasticate (EOE)

lem	Name:	Quest.	1.1	1.2	2.1	2.2	2.3	2.4	2.5	Tot	Points
	Student code:	Marks	12	12	5	12	7	8.5	16	72.5	7.5
7.1.1	7.1.1 A number of reaction types is listed in the table below. All reactions invol										
	olism of HMG-CoA to IP						nose	type	s of	reacti	ions wh
cataly No	zed by E1 and E3 (put number					es).					
1.	Dehydration			tion t							
2.	Decarboxylation										
3.	Dephosphorylation										
4.	4 electron reduction										
5.	Release of the reduced fo	rm of coe	nzyn	ne A	(Co.	A-SE	<u>I)</u>				
6.	Monophosphorylation										
7.	Oxidation of hydroxyl gre	oup as the	e thir	d sta	ge of	HM	G-C	οΑ β	-oxid	lation	cycle
TD 1											
E1											
E3											
	of the stereocen <u>ter.</u>		тети	cai a	etails	s and	indi	cate	abso	lute co -	onfigura
7.2.1	of the stereocenter. Write down the overall rea	ction equ									
7.2.1	of the stereocenter.	ction equ									
7.2.1	of the stereocenter. Write down the overall rea	ction equ									
7.2.1 sulfide	of the stereocenter. Write down the overall real e used as the reducing agent	ction equ									
7.2.1 sulfide	of the stereocenter. Write down the overall rea	ction equ									
7.2.1 sulfide	of the stereocenter. Write down the overall real e used as the reducing agent	ction equ									
7.2.1 sulfide	Write down the overall real e used as the reducing agent	ction equ									
7.2.1 sulfide	Write down the overall real e used as the reducing agent	ction equ									
7.2.1 sulfide	Write down the overall real e used as the reducing agent	ction equ									
7.2.1 sulfide	Write down the overall real e used as the reducing agent	ction equ									
7.2.1 sulfide	Write down the overall real e used as the reducing agent	ction equ									
7.2.1 sulfide	Write down the overall real e used as the reducing agent	ction equ									
7.2.1 sulfide	Write down the overall real e used as the reducing agent	ction equ									
7.2.1 sulfide	Write down the overall real e used as the reducing agent	ction equ									
7.2.1 sulfide	Write down the overall real e used as the reducing agent	ction equ									

Number of hydrogen atoms_

Molecular formula:

Problem	Name:	Quest.	1.1	1.2	2.1	2.2	2.3	2.4	2.5	Tot	Points
7	Student code:	Marks	12	12	5	12	7	8.5	16	72.5	7.5

7.2.3 Calculate the number of IPP and DAP molecules needed to give Y5.

Your justification:

Number of IPP molecules _____ Number of DAP molecules _____

7.2.4 Draw the product of coupling reaction between one IPP molecule and one DAP molecule, subsequent reductive ozonolysis of which gives Y1, Y2 and one more product, the latter containing phosphorus.

7.2.5 Draw the structures of Y and Y4 with stereochemical details.

Y4

oblem	Name:		Quest.	1.1	1.2	2.1	2.2	2.3	3.1	3.2	3.3	3.4	Tot	Points
8	Student code:		Marks	8	9	5	11	14	16.5	12	10	13.5	99	8
8.1.1	Expressions for the r	ates:												
V _{act} =	:				\mathbf{v}_{p}	,=								
$v_{ m deact} = v_{ m t} =$														
8.1.2	Compare rates using	g operatoi	rs <<, <u> </u>	ξ, ≈,	<u>>,</u> >	>								
	$\mathbf{V}_{ ext{deact}}$	V _{act}							V	⁷ deact	V	⁷ t		
	$\mathbf{V}_{ ext{deact}}$	V _p												
8.2.1 Mass of the obtained polymer.														
m =														
8.2.2	Degree of polymerize	ation of ti	he obtai	ned	poly	mer								
8.2.2	Degree of polymerize	ation of ti	he obtai	ned	<u>poly</u>	mer								
8.2.2		ation of th	he obtai	ned	poly	mer								
8.2.2		ation of ti	he obtai	ned	<u>poly</u>	mer								
8.2.2		ation of ti	he obtai	ned	<u>poly</u>	mer	:							
8.2.2		ation of ti	he obtai	ned	poly	mer								
8.2.2		ation of ti	he obtai	ned	poly	mer	:							

Problem	Name:	Quest.	1.1	1.2	2.1	2.2	2.3	3.1	3.2	3.3	3.4	Tot	Points
8	Student code:	Marks	8	9	5	11	14	16.5	12	10	13.5	99	8

8.2.3 *Structure of the obtained polymer.*

									,					
8.3.1	Fill	in	the	right	column	with	symbols	(a-g)	of^{-1}	H N N	MR	signals	corresponding	to

8.3.1 Fill in the right column with symbols (a-g) of ¹H NMR signals corresponding to substructures in the left column.

Cotumn.	
* CH ₂ *	
CH ₂ CH ₂ *	
*	
H	
н	
H	
*	
H	
Н	
*	
*	
*	
H CI	
*	
CI	
H	

8.3.2 Composition and molecular weights of copolymers P1 and P2.

Your justification:	Your justification:
n(C) = n(D) =	M(P1) = M(P2) =

Problem	Name:	Quest.	1.1	1.2	2.1	2.2	2.3	3.1	3.2	3.3	3.4	Tot	Points
8	Student code:	Marks	8	9	5	11	14	16.5	12	10	13.5	99	8

8.3.3. All possible reactions of activation	
P1:	
P2:	
12.	
8.3.4 Structure of P1 and one of possible structu	was of D?
P1:	nes 0j 1 2
PI.	P2: