定数と有用な数式

 $1 \text{ Å} = 10^{-10} \text{ m}$

光速 c = 3.00·10 ms

 $\Delta G = \Delta H - T \cdot \Delta S$ $\Delta G = -nEF$

 $\Delta G^{\circ} = -RT \cdot lnK$

 $\Delta G = \Delta G$ + RT·InQ ここで Q = (生成物の濃度の積) / (反応物の濃度の積)

$$\Delta H(T_1) = \Delta H^0 + \int_{299.15}^{T_1} C_p dT$$

 $\Delta H(T_1) = \Delta H^0 + \int_{-\infty}^{\infty} C_p dT$ $C_p が一定なら \Delta H(T_1) = \Delta H^0 + (T_1 - 298.15 \text{ K}) \cdot C_p$

アレニウスの式 $k = A \cdot e^{\frac{E_s}{RT}}$

理想気体の状態方程式 $p \cdot V = n \cdot RT$ 浸透圧 $\Pi : \Pi \cdot V = n \cdot RT$

ネルンストの式 $E = E^0 + \frac{RT}{nF} \cdot \ln \frac{c_{ox}}{c_{med}}$

ブラッグの法則 n·λ = 2d·sinθ

ランバート - ベールの法則 A = log $\frac{P_0}{P}$ = ε·c·d

光子のエネルギー $E = h \cdot c \cdot \lambda^{-1}$ 運動エネルギー = ½ mv

 $p = \frac{F}{A}$ $F = m \cdot a$

円柱の体積= $\pi \cdot r$ h 球の表面積 = $4\pi \cdot r$ 球の体積 = (4/3) $\pi \cdot r$ 3

1 J = 1 Nm 1 N = 1 kg ms⁻² 1 Pa = 1 N m⁻² 1 W = 1 J s

周期律表 原子量(単位 u)

1 H 1.01	Periodic table of elements with atom masses / u																2 He 4.00
3 Li 6.94	4 Be 9.01		with atom masses / u										6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31											13 AI 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 CI 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65,39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 126.90	54 Xe 131.2
55 Cs 132.91	56 Ba 137.3	57-71	72 Hf 178.49	73 Ta 180.95	74 W 183,84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.19	83 Bi 208.98	84 Po 208.98	85 At 209.99	86 Rn 222.0
87 Fr 223	88 Rd 226	89- 103	104 Rf 261	105 Db 262	106 Sg 263	107 Bh 264	108 Hs ₂₆₅	109 Mt 268									
			57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm 144.92	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.9
			89 Ac 227	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu 244	95 Am 243	96 Cm 247	97 Bk 247	98 Cf 251	99 Es 252	100 Fm 257	101 Md 258	102 No 259	103 Lr 262