Task 1

a)

10% of the total

1a	1b	1c	1d	Task 1
30	2	12	4	48

b)	Calculate the theoretical yield of your product in q.

Yield of the product in g, measured by the organizer:

Calculate the theoretical yield of your product in g.
oretical vield:
•

c) Sketch your developed TLC plate and leave on your desk to be evaluated,

Name: Code: XXX-

d)	Interpret your experiment and choose the correct answer.
The	acetylation reaction of glucose is exothermic. a) Yes b) No c) Cannot be decided based on these experiments
	isomerisation reaction of β -D-glucopyranose pentaacetate can be used for the paration of pure α -D-glucopyranose pentaacetate. \square a) Yes \square b) No \square c) Cannot be decided based on these experiments

Name: Code: XXX-

Task 2

15 % of the total

2a				2e	Task 2
25	4	25	6	5	65

a)	Ce ⁴⁺ consumptions:
Ave	rage volume consumed (V_1):
b)	The titration reaction:
Cald	culation of sample mass:
K₄ſF	Fe(CN) ₆].3H ₂ O mass (<i>m</i>):
c)	Zinc consumptions:
Ave	rage volume consumed (V_2):
d)	Mark the correct answer.
The	diphenyl amine indicator changes in colour at the end point a) because the concentration of the Zn ²⁺ ions increases. b) because the concentration of the [Fe(CN) ₆] ⁴⁻ ions decreases. c) because the concentration of the [Fe(CN) ₆] ³⁻ ions increases. d) because the indicator is liberated from its complex.

Which form of the indicator is a) Oxidized b) Reduced c) Complexed to a me		nt?	
At the beginning of the titration hexacyanoferrate(III) system is indicator. a) True b) False	the redox potential for the	e hexacyanoferrate(II) - ential of the diphenyl amine	
e) <u>Determine</u> the formula of	the precipitate. <u>Show</u> you	r work.	
The formula of the precipitate:			
Items replaced or refilled:	Student signature:	Supervisor signature:	

Code: XXX-

Name:

Name: Code: XXX-

Task 3

15 % of the total

Task 3	
108	

Only fill out this table when you are ready with all your assignments.

	1	2	3	4	5	6	7	8
Cation								
Anion								