Name:

Student code:

1.1 Chemical equations:

(2 points)

a) methane:

CH₄ + 2 O₂

CO₂ + 2 H₂O

b) ethane:

 $2 C_2H_6 + 7 O_2$

4 CO₂ + 6 H₂O

Thermodynamic data for the equations:

(4 points)

$$\Delta H^0 = [2 \cdot (-241.8) - 393.5 - (-74.6)] \text{ kJ mol}^1 = -802.5 \text{ kJ mol}^1$$

 $\Delta S^0 = [2 \cdot (188.8) + 213.8 - 186.3 - 2 \cdot 205.2] \text{ J mol}^1 \text{ K}^1 = -5.3 \text{ J mol}^1 \text{ K}^1$
 $\Delta G^0 = .7802.5 \text{ kJ mol}^1 - 298.15 \text{ K} \cdot (-5.3 \text{ J mol}^1 \text{ K}^1) = -800.9 \text{ kJ mol}^1$

Methane:

 $\Delta H^0 = -802.5 \text{ kJ mol}^{-1}$ $\Delta S^0 = -5.3 \text{ J mol}^{-1} \text{ K}^{-1}$ $\Delta G^0 = -800.9 \text{ kJ mol}^{-1}$

$$\Delta H^0 = [6 \cdot (-241.8) - 4 \cdot 393.5 - 2 \cdot (-84.0)] \text{ kJ mol}^{-1} = -2856.8 \text{ kJ mol}^{-1}$$

 $\Delta S^0 = [6 \cdot 188.8 + 4 \cdot 213.8 - 2 \cdot 229.2 - 7 \cdot 205.2] \text{ J mol}^{-1} \text{ K}^{-1} = +93.2 \text{ J mol}^{-1} \text{ K}^{-1}$
 $\Delta G^0 = -2856.8 \text{ kJ mol}^{-1} - 298.15 \text{ K} \cdot (93.2 \text{ J mol}^{-1} \text{ K}^{-1}) = -2884.6 \text{ kJ mol}^{-1}$

Ethane:

 $\Delta H^0 = -2856.8 \text{ kJ mol}^{-1}$ $\Delta S^0 = +93.2 \text{ J mol}^{-1} \text{ K}^{-1}$ $\Delta G^0 = -2884.6 \text{ kJ mol}^{-1}$

1.2 a) Amount of methane and ethane in 1 m³ natural gas:

(7 points)

(1 point)

(idea 2 points)

$$m = \rho \cdot V = 0.740 \text{ g L}^{-1} \cdot 1000 \text{ L} = 740 \text{ g}$$

 $M_{\text{av}} = \sum_{i} x(i)M(i) = 0.0024 \cdot 44.01 \text{ g mol}^{-1} + 0.0134 \cdot 28.02 \text{ g mol}^{-1}$

 $+ 0.9732 \cdot 16.05 \text{ g mol}^{-1} + 0.011 \cdot 30.08 \text{ g mol}^{-1}$

$$= 16.43 \text{ g mol}^{-1}$$

(2 points)

$$n_{\text{tot}} = m (M_{\text{av}})^{-1} = 740 \text{ g} \cdot (16.43 \text{ g/mol})^{-1} = 45.04 \text{ mol}$$

(1 point)

$$n(i) = x(i) \cdot n_{\text{tot}}$$

$$n(CH_4) = x(CH_4) \cdot n_{tot} = 0.9732 \cdot 45.04 \text{ mol} = 43.83 \text{ mol}$$

$$n(C_2H_6) = x(C_2H_6) \cdot n_{tot} = 0.0110 \cdot 45.04 \text{ mol} = 0.495 \text{ mol}$$

(1 point)

1.2 b) Energy of combustion, deviation:

(2 points)

$$E_{\text{comb.}}(H_2O(g)) = \sum_i n(i) \Delta_c H^{\circ}(i) = 43.83 \text{ mol} \cdot (-802.5 \text{ kJ mol}^{-1}) + 0.495 \text{ mol} \cdot 0.5 \cdot (-2856.8 \text{ kJ mol}^{-1})$$

= -35881 kJ

$$E_{comb.}$$
 (H₂O(g)) = -35881 kJ

(1 point)

Deviation from PUC

$$E_{PUC}(H_2O(g)) = 9.981 \text{ kWh m}^{-3} \cdot 1 \text{ m}^3 \cdot 3600 \text{ kJ (kWh)}^{-1} = 35932 \text{ kJ}$$

deviation
$$\Delta E = (E_{\text{comb.}}(H_2O(g)) - E_{\text{PUC}}(H_2O(g)) \cdot 100\% \cdot [E_{\text{comb.}}(H_2O(g))]^{-1}$$

= $(35881 \text{ kJ} - 35932 \text{ kJ}) \cdot 100\% \cdot (35881 \text{ kJ})^{-1} = -0.14\%$

deviation = -0.14 %

1.3 Energy for heating the water:

(4 points)

Volume of water:

$$V_{\rm water} = 22.5 \, {\rm m}^3$$

(0.5 points)

$$n_{\text{water}} = V_{\text{water}} \rho_{\text{water}} (M_{\text{water}})^{-1} =$$

$$n_{\text{water}} = V_{\text{water}} \rho_{\text{water}} (M_{\text{water}})^{-1} = 22.5 \text{ m}^3 \cdot 10^6 \text{ g m}^{-3} \cdot (18.02 \text{ g mol}^{-1})^{-1} = 1.249 \cdot 10^6 \text{ mol}$$

(0.5 points)

$$E_{\text{water}} = n_{\text{water}} \cdot C_p \cdot \Delta T = 1.249 \cdot 10^6 \text{ mol} \cdot 75.30 \text{ JK}^{-1} \text{ mol}^{-1} \cdot 14 \text{ K} = 1316 \text{ MJ}$$

(1.5 points)

Energy for heating the air

Volume of the house is:
$$V_{air} = 15 \text{ m} \cdot 8 \text{ m} \cdot 3 \text{ m} + 0.5 \cdot 15 \text{ m} \cdot 8 \text{ m} \cdot 2 \text{ m} = 480 \text{ m}^3$$

(1 point)

$$n_{\text{air}} = pV \cdot (RT)^{-1} = 1.013 \cdot 10^5 \text{ Pa} \cdot 480 \text{ m}^3 \cdot (8.314 \text{ J (K mol)}^{-1} \cdot 283.15 \text{ K})^{-1} = 2.065 \cdot 10^4 \text{ mol}$$
 (0.5)

$$C_0(\text{air}) = 0.21 \cdot 29.4 \text{ J (K mol)}^{-1} + 0.79 \cdot 29.1 \text{ J (K mol)}^{-1} = 29.16 \text{ J (K mol)}^{-1}$$

$$E_{\text{pir}} = 0.21 \cdot 29.4 \text{ J (K mol)} + 0.79 \cdot 29.1 \text{ J (K mol)} = 29.16 \text{ J (K mol)}$$

 $E_{\text{air}} = n_{\text{air}} \cdot C_{\rho}(\text{air}) \cdot \Delta T = 2.065 \cdot 10^4 \text{ mol} \cdot 29.17 \text{ J (K mol)}^{-1} \cdot 20 \text{ K} = 12.05 \text{ MJ}$

$$E_{air} = 12.05 \text{ MJ}$$

(2.5)

1.4 Energy for maintaining the temperature:

(2 points)

surface area of the house:

$$A_{\text{house}} = 3 \text{ m} \cdot 46 \text{ m} + 8 \text{ m} \cdot 2 \text{ m} + ((2 \text{ m})^2 + (4 \text{ m})^2)^{1/2} \cdot 2 \cdot 15 \text{ m} = 288.16 \text{ m}^2$$

(1 point)

Heat conductivity: $\lambda_{\text{wall}} = 1 \text{ J (s K m)}^{-1}$

Energy flux along a temperature gradient (wall thickness d = 0.2 m)

$$J = E_{loss} (A \cdot \Delta t)^{-1} = \lambda_{wall} \cdot \Delta T \cdot d^{-1}$$

$$E_{\text{loss}} = 288.16 \text{ m}^2 \cdot (12.60.60 \text{ s}) \cdot 1 \text{ J (s K m)}^{-1} \cdot 25 \text{ K} \cdot (0.2 \text{ m})^{-1} = 1556 \text{ MJ}$$

(1 point)

1.

Student code:

1.5 Total energy and costs:

(3 points)

total energy: $E_{\text{tot}} = E_{\text{water}} + E_{\text{air}} + E_{\text{loss}} = 1316 \text{ MJ} + 12 \text{ MJ} + 1556 \text{ MJ} = 2884 \text{ MJ}$

total energy

$$E_{\text{tot}} = 2884 \text{ MJ}$$

(0.5)

2884 MJ corresponds to $2.884 \cdot 10^6 \text{ kJ} \cdot (3600 \text{ s h}^{-1} \cdot 9.981 \text{ kJ s}^{-1} \text{ m}^{-3} \cdot 0.9)^{-1} = 89.18 \text{ m}^3$

volume of gas

$$V = 89.18 \text{ m}^3$$

(1)

2884 MJ correspond to a cost of:

0.40 €m⁻³ · 89.18 m³

= 35.67 €

rent for equipment:

150.00€

total cost of gas heating

= 185.67 €

(0.5)

2884 MJ correspond to a cost of

 $2.884 \cdot 10^6 \text{ kJ} \cdot 0.137$ € · (3600 s h⁻¹·1 kJ s⁻¹ h)⁻¹ = 109.75 €

rent for equipment:

100.00€

total cost of electric heating

= 209.75€

(1)

2.1	Reaction	equations:
-----	----------	------------

(3 points)

$$\longrightarrow$$
 2 CO₂

$$\longrightarrow$$
 N₂ + 2 CO₂

$$2 C_8 H_{18} + 25 O_2 \longrightarrow 16 CO_2 + 18 H_2 O$$

2.2 Questions concerning the λ probe:

(3 points)

true	false	no decision
		possible

If the λ -value is in the range of the λ -window, carbon monoxide and hydrocarbons can be oxidised at the three-way catalytic converter.

With $\lambda > 1$, carbon monoxide and hydrocarbons can be oxidised at the three-way catalytic converter.

With λ < 0.975, nitrogen oxides can be reduced poorly.

Х

2.3 a) Surface coverage:

(1 point)

$$\theta = \frac{0.85kPa^{-1} \cdot 0.65kPa}{1 + 0.85 \cdot 0.65}$$

 θ = 0.356 or 35.6 %

2.3 b) Pressure at which 15% of the surface is covered:

(2 points)

$$\theta = \frac{K \cdot p}{1 + K \cdot p} \iff K \cdot p = \theta + \theta \cdot K \cdot p \iff p \cdot (K - \theta \cdot K) = \theta \iff p = \frac{\theta}{K - \theta \cdot K}$$

$$\Leftrightarrow$$
 $p \cdot (K - \theta \cdot K) = \theta$

$$\Leftrightarrow p = \frac{\theta}{K - \theta \cdot K}$$

(1 point)

 $\theta = 0.15$

p = 0.21 kPa

(1 point)

2.3 c) Orders of decomposition:

(3 points)

order of the decomposition reaction at low gas pressures order of the decomposition reaction at high gas pressures 1

(1.5 points) (1.5 points)

notes:

$$r = k \cdot \theta = k \cdot \frac{K \cdot p}{1 + K \cdot p}$$
, $p \ low \Rightarrow p << \frac{1}{K} \Rightarrow r = k \cdot K \cdot p$ reaction order 1.

$$p \ high \Rightarrow p >> \frac{1}{K} \Rightarrow r = k$$
 reaction order 0.

2.3 d) Gas volume $V_{a,max}$ and product $K \cdot V_{a,max}$:

(4 points)

(2)

$$\frac{1}{\theta} = \frac{1}{K \cdot p} + 1 = \frac{V_{a,max}}{V_a}$$

$$\Rightarrow \frac{1}{K \cdot V_{a,max}} + \frac{p}{V_{a,max}} = \frac{p}{V_a}$$

slope:
$$\frac{1}{V_{a,max}} = 1.9 \text{ cm}^{-3}$$
 \Rightarrow $V_{a,max} = 0.53 \text{ cm}^{3}$ (1)

$$\frac{1}{K \cdot V_{a,max}} = 6 \cdot 10^2 \text{ Pa cm}^{-3} \qquad \Rightarrow \qquad K \cdot V_{a,max} = 1.7 \cdot 10^{-3} \text{ Pa}^{-1} \text{ cm}^3$$

$$K \cdot V_{a,max} = 1.7 \cdot 10^{-3} \text{ Pa}^{-1} \text{ cm}^{-3}$$

(1)

2.4 Equation for reaction rate:

The information given in the text leads directly to $r = k_2 \cdot \theta_{CO_2}$

$$r = k_2 \cdot \theta_{CO_2}$$

(2)

The law of mass action for the first step of the mechanism is given by

$$\theta_{\text{CO}_2} = \frac{k_1}{k_1} \cdot \theta_{\text{co}} \cdot \theta_{0_2}^{\frac{1}{2}},$$

$$\Rightarrow r = k_2 \cdot \frac{k_1}{k_1} \cdot \theta_{co} \cdot \theta_{o_2}^{\frac{1}{2}}.$$

(1)

The Langmuir isotherm gives:

$$\theta_{CO} = \frac{K_{CO} \cdot p_{CO}}{1 + K_{CO_2} \cdot p_{CO_2} + K_{CO} \cdot p_{CO} + K_{O_2} \cdot p_{O_2}} \text{ and } \theta_{O_2} = \frac{K_{O_2} \cdot p_{O_2}}{1 + K_{CO_2} \cdot p_{CO_2} + K_{CO} \cdot p_{CO} + K_{O_2} \cdot p_{O_2}}$$
(1.5)

$$\mathbf{r} = k_2 \frac{k_1}{k_{-1}} \frac{K_{CO} \cdot p_{CO} \cdot (K_{O_2} \cdot p_{O_2})^{\frac{1}{2}}}{(1 + K_{CO_2} \cdot p_{CO_2} + K_{CO} \cdot p_{CO} + K_{O_2} \cdot p_{O_2})^{\frac{3}{2}}}.$$
(0.5)

3,

Name: _____

3,

Student code:

3.1 Chemical equations:

(3 points)

- (a) $CaCl_2 + Ca \longrightarrow$
- (b) $2 \operatorname{CaCl}_2 + \operatorname{H}_2 \longrightarrow 2 \operatorname{CaCl} + 2 \operatorname{HCl}$
- (c) $4 \text{ CaCl}_2 + \text{C} \longrightarrow 4 \text{ CaCl} + \text{CCl}_4$

3.2

(2 points)

silvery metallic particles:

Ca

2 CaCl

colorless crystals:

CaCl₂

Note: CaCl cannot be obtained by a conventional solid state reaction of Ca and CaCl₂

3.3 Empirical formula:

(4 points)

100 %
$$-(m/m\% Ca + m/m\% Cl) = m/m\% X$$

100 % $-(52.36\% + 46.32\%) = 1.32\% X$ (1)

mol% of Ca = 52.36 m/m% / M(Ca)= $52.36 \text{ m/m}\% / 40.08 \text{ g mol}^{-1}$

= 1.31 mol% (0.5)

mol% of CI = 46.32 m/m% / M (CI)

= 46.32 m/m% / 35.45 g mol⁻¹

= 1.31 mol% (0.5)

mol% of X = 1.32 % X / M (H)

= 1.32 % X / 1.01 g mol⁻¹

= 1.31 mol%

n(Ca): n(Cl): n(H) = 1:1:1

empirical formula

CaClH

(1)

(1)

Notes: The reaction of $CaCl_2$ with hydrogen does not lead to CaCl. The hydride CaClH is formed instead. The structure of this compound was determined by X-ray structure analysis which is not a suitable method to determine the position of light elements like hydrogen. Thus, the presence of hydrogen was missed and CaClH was thought to be CaCl for quite a long time.

3.4 a) Structures only:

(2 points)

$$C = C = C$$

$$H-C \equiv C-CH_3$$

3.4 b) Empirical formula of the compound formed:

(2 points)

Ca₃C₃Cl₂

Notes: If the ratio of n(Ca):n(Cl) = 1.5:1 [or better = 3:2 which can be rewritten as $CaCl_2 \cdot 2Ca^{2+} = 1.5:1$] Ca₃Cl₂⁴⁺] is given and the reduction product must contain a C₃⁴⁻ anion which needs two Ca²⁺ cations for electroneutrality, the composition Ca₃C₃Cl₂ will follow.

3.5 a) Structure type CaCl likely to have:

(1 point)

 $r(Ca^{+})/r(Cl^{-}) = 120 \text{ pm}/167 \text{ pm} = 0.719$

Х

CsCl

ZnS

BN

no decision possible

3.5 b) $\Delta_f H^0$ (CaCl) with a Born-Haber-cycle:

(5 points)

Summing up of all the single steps of the Born-Haber-cycle:

$$\Delta_f H^0$$
 (CaCl)

$$= \Delta_{\text{subl}} \mathcal{H}^0(\text{Ca}) + \Delta_{\text{1. IE}} \mathcal{H}(\text{Ca}) + \frac{1}{2} \Delta_{\text{diss}} \mathcal{H}(\text{Cl}_2) + \Delta_{\text{EA}} \mathcal{H}(\text{Cl}) + \Delta_{\text{L}} \mathcal{H}(\text{CaCl})$$

$$= (159.3)$$

(1)

(0.5)

(1)

(0.5)

(1)

∆ _fH⁰(CaCl)

(1) (2 points)

3.6 Stability to disproportionation:

 $= -231.9 \text{ kJmol}^{-1}$

$$\Delta H = \Delta_f H^0(CaCl_2) - 2 \Delta_f H^0(CaCl) = -796.0 \text{ kJ mol}^{-1} + 463.8 \text{ kJ mol}^{-1} = -332.2 \text{ kJ mol}^{-1}$$

disproportionation

y	CO

4.1 Atomic mass of X, symbol of X, structures:

(7 points)

$$X + 2 H_2 \longrightarrow XH_4$$

$$2 X + 3 H_2 \longrightarrow X_2 H_6$$

5.0 g =
$$[n_1(X) + n_2(X)] \cdot M(X)$$

5.628 g =
$$n_1(XH_4) \cdot [M(X) + 4.1.01 \text{ g mol}^{-1}] + n_2(X_2H_6) \cdot [2M(X) + 6.1.01 \text{ g mol}^{-1}]$$

$$n_1(XH_4) = 2n_2(X_2H_6)$$

$$III,I) \rightarrow I'$$

$$2n_1(X) \cdot M(X) = 5.0 g$$

$$|||,||) \rightarrow ||$$

$$III,II) \rightarrow II'$$
 $n_1(X) \cdot [2M(X) + 7.07 \text{ g mol}^{-1}] = 5.628 \text{ g}$

$$I', II') \rightarrow VI$$

$$(5.0 \text{ g}) \cdot [2M(X)]^{-1} = (5.628 \text{ g}) \cdot [2M(X) + 7.07 \text{ g mol}^{-1}]^{-1}$$

 $M(X) = 3.535 \text{ g mol}^{-1} \cdot (5.628 \text{ g})^{-1} \cdot [(5.0 \text{ g})^{-1} - (5.628 \text{ g})^{-1}]^{-1}$

 $M(X) = 28.14 \text{ g mol}^{-1}$

atomic mass of X $M(X) = 28.14 \text{ g mol}^{-1}$

3D structures of the two products:

(1)

4

Name: _____

42

Student code:

4.2 Atomic mass of Y and empirical formula of Argyrodite:

(9 points)

$$Ag_aY_bS_{0.5\cdot a+2\cdot b} + bH_2 \longrightarrow 0.5aAg_2S + bYS + bH_2S$$

1) 10 g =
$$n(Ag_aY_bS_{0.5\cdot a+2\cdot b}) \cdot [a\cdot 107.87 \text{ g mol}^1 + b\cdot M(Y) + (0.5\cdot a+2\cdot b)\cdot 32.07 \text{ g mol}^1]$$
 (3)

II)
$$n(H_2) = \frac{p \cdot V(H_2)}{RT} \qquad n(H_2) = \frac{100kPa \cdot 0.295 \cdot 10^{-3} m^3}{8.314JK^{-1}mol^{-1} \cdot 400K}$$

$$n(H_2) = 8.871 \cdot 10^{-3} \text{ mol}$$
 $n(Ag_a Y_b S_{0.5 \cdot a + 2 \cdot b}) = b^{-1} \cdot 8.871 \cdot 10^{-3} \text{ mol}$ (1)

III)
$$11.88 = \frac{a \cdot 107.87 \, \text{gmol}^{-1}}{b \cdot M(Y)} \qquad a \cdot 107.87 \, \text{gmol}^{-1} = 11.88 \cdot b \cdot M(Y) \tag{1}$$

II,I)
$$\rightarrow$$
II') b·10 g·(8.871·10⁻³ mol)⁻¹ = a·107.87 g mol⁻¹ + b·M(Y) + (0.5·a + 2b)·32.07 g mol⁻¹
b·1127 g mol⁻¹ = a·107.87 g mol⁻¹ + b·M(Y) + (0.5·a + 2b)·32.07 g mol⁻¹

III,II')
$$\rightarrow$$
IV) b·1127 g mol⁻¹ = 11.88·b·M(Y) + b·M(Y) + (0.5·a + 2b)·32.07 g mol⁻¹
b·1127 g mol⁻¹ = 11.88·b·M(Y) + b·M(Y) + (0.5· $\frac{11.88 \cdot b \cdot M(Y)}{107.87 g mol^{-1}}$ + 2b)·32.07 g mol⁻¹
M(Y) = 72.57 g mol⁻¹ (2)

atomic mass
$$M(Y) = 72,57 \text{ g mol}^1$$
 (1)

$$M(Y) = 72.57 \text{ g mol}^{-1} \rightarrow III$$
 a:b = 8:1 (1)

chemical symbol of Y: Ge empirical formula of Argyrodite: Ag₈GeS₆

4

Name:

Student code:

4.3 The force constants of a C-H bond:

(1 point)

$$k(\text{C-H}) = [2\pi \cdot c \cdot \widetilde{v} \text{ (C-H)}]^2 \cdot \frac{1}{N_A} \cdot \frac{3M(C) \cdot M(H)}{3M(C) + 4M(H)}$$
$$= [2\pi \cdot 3 \cdot 10^{10} \text{ cm} \cdot \text{s}^{-1} \cdot 3030 \text{ cm}^{-1}]^2 \cdot \frac{1}{6.022 \cdot 10^{23} \text{ mol}^{-1}} \cdot \frac{3 \cdot 12.01 \cdot 1.01}{3 \cdot 12.01 + 4 \cdot 1.01} \text{gmol}^{-1}$$

$$k(C-H) = 491.94 \text{ N m}^{-1}$$

The force constants of a Z-H bond:

(1 point)

$$k(Z-H) = k(C-H) \cdot \frac{\Delta_b H(Z-H)}{\Delta_b H(C-H)}$$

= 491.94 N m⁻¹·450.2 kJ mol⁻¹·[438.4 kJ mol⁻¹]⁻¹

$$k(Z-H) = 505.18 \text{ N m}^{-1}$$

The atomic mass and symbol of Z:

(2 points)

$$\frac{3M(Z) \cdot M(H)}{3M(Z) + 4M(H)} = \frac{k(Z - H) \cdot N_A}{[2\pi \cdot c \cdot \widetilde{v}(Z - H)]^2}$$

$$M(Z) = \frac{4}{3} \cdot \left(\frac{[2\pi \cdot c \cdot \widetilde{v}(Z - H)]^2}{k(Z - H) \cdot N_A} - \frac{1}{M(H)}\right)^{-1}$$

$$M(Z) = \frac{4}{3} \cdot \left(\frac{[2\pi \cdot 3 \cdot 10^{10} \cdot 2938.45]^2}{505180 \cdot 6.022 \cdot 10^{23}} - \frac{1}{1.01} \right)^{-1} \text{g mol}^{-1}$$

atomic mass of Z

$$M(Z) = 72.68 \text{ g mol}^{-1}$$

chemical symbol of Z

Ge

Note: Even if the students find different values (\pm 2) due to different ways of rounding, they will be able to find Ge as Z has to be an analogue of carbon.

5.1 Actual $\triangle G'$ of reaction (1):

(2 points)

$$\Delta G' = \Delta G^{0'} + RT \ln \frac{c(ADP^{3-})/(1 \ molL^{-1}) \cdot c(HPO_4^{2-})/(1 \ molL^{-1})}{c(ATP^{4-})/(1 \ molL^{-1})}$$
(0.5)

=
$$-30500 \text{ J mol}^{-1} + 8.314 \text{ J mol}^{-1} \text{ K}^{-1} \cdot 298.15 \text{ K} \cdot \text{ln} (0.00025 \cdot 0.00165 / 0.00225)$$
 (1)

$$= -30.5 \text{ kJ mol}^{-1} - 21.3 \text{ kJ mol}^{-1}$$

$$= -51.8 \text{ kJ mol}^{-1}$$
 (0.5)

△G'= -51.8 kJ mol⁻¹

5.2 Equilibrium constant K' of reaction (2), ratio c(glucose 6-phosphate) / c(glucose): (3 points)

$$\Delta G^{\circ}{}' = -RT \cdot lnK' \tag{0.5}$$

$$K'$$
 = $e^{-\Delta G^{**}/RT}$ (0.5)
= $e^{-13800 \text{ J/mol } / (8.314 \text{ J/(mol K}) \cdot 298.15 \text{ K})}$

$$K' = \frac{c(\text{glucose 6-phosphate})/(1 \text{ mol } L^{-1})}{c(\text{glucose})/(1 \text{ mol } L^{-1}) \cdot c(\text{HPO}_4^{2-})/(1 \text{ mol } L^{-1})}$$
(0.5)

$$\frac{c(\text{glucose 6-phosphate})}{c(\text{glucose})} = K' \cdot c(HPO_4^{2^2}) \cdot (1 \text{ mol } L^{-1})^{-1}$$
 (0.5)

$$= 0.0038 \cdot 0.00165$$
$$= 6.3 \cdot 10^{-6} \tag{0.5}$$

$$\frac{\text{c(glucose 6-phosphate)}}{\text{c(glucose)}} = 6.3 \cdot 10^{-6}$$

 $(\Sigma 1.5)$

 $(\Sigma 1.5)$

$\Delta G^{\circ\prime}(3) = \Delta G^{\circ\prime}(1) + \Delta G^{\circ\prime}(2)$ $= -30.5 \text{ kJ mor}^{-1} + 13.8 \text{ kJ mor}^{-1}$ $= -16.7 \text{ kJ mor}^{-1}$ $\Delta G^{\circ\prime} = -RT \cdot InK'$ $K' = e^{-\Delta G^{\circ\prime}/RT}$ $= e^{16700 \text{ J/mol} / (8.314 \text{ J/(mol K)} \cdot 298.15 \text{ K})}$ $= 843$ $K' = \frac{c(\text{glucose 6-phosphate}) \cdot c(\text{ADP}^{3-})}{c(\text{glucose}) \cdot c(\text{ATP}^{4-})}$ $= K' \cdot \frac{c(ATP^{4-})}{c(ADP^{3-})}$ $= 843 \cdot 2.25 \text{ mmol L}^{-1} / 0.25 \text{ mmol L}^{-1}$ $= 7587$ $\Delta G^{\circ\prime} = -16.7 \text{ kJ mol}^{-1} (\Sigma 1) \qquad K' = 843 (\Sigma 1.5) \qquad \frac{c(\text{glucose 6-phosphate})}{c(\text{glucose})} = 7587 (C)$	4 points) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)
$= -30.5 \text{ kJ mol}^{-1} + 13.8 \text{ kJ mol}^{-1}$ $= -16.7 \text{ kJ mol}^{-1}$ $\Delta G^{\circ}' = -RT \cdot \ln K'$ $K' = e^{-\Delta G^{\circ}' / R T}$ $= e^{16700 \text{ J/mol} / (8.314 \text{ J/(mol K)} \cdot 298.15 \text{ K})}$ $= 843$ $K' = \frac{c(\text{glucose 6-phosphate}) \cdot c(\text{ADP}^{3-})}{c(\text{glucose}) \cdot c(\text{ATP}^{4-})}$ $= K' \cdot \frac{c(ATP^{4-})}{c(ADP^{3-})}$ $= 843 \cdot 2.25 \text{ mmol L}^{-1} / 0.25 \text{ mmol L}^{-1}$ $= 7587$ $\Delta G^{\circ}' = -16.7 \text{ kJ mol}^{-1} (\Sigma 1)$ $K' = 843 (\Sigma 1.5) \frac{c(\text{glucose 6-phosphate})}{c(\text{glucose})} = 7587 (C(\text{glucose}))$	(0.5) (0.5) (0.5) (0.5) (0.5) (0.5)
$ \Delta G^{\circ\prime} = -RT \cdot lnK' $ $ K' = e^{-\Delta G^{\circ\prime}/RT} $ $ = e^{16700 J/\text{mol } I/(8.314 J/(\text{mol } K) \cdot 298.15 K)} $ $ = 843 $ $ K' = \frac{c(\text{glucose } 6\text{-phosphate}) \cdot c(\text{ADP}^{3\text{-}})}{c(\text{glucose}) \cdot c(\text{ATP}^{4\text{-}})} $ $ = K' \cdot \frac{c(ATP^{4\text{-}})}{c(ADP^{3\text{-}})} $ $ = 843 \cdot 2.25 \text{mmol } L^{-1} / 0.25 \text{mmol } L^{-1} $ $ = 7587 $ $ \Delta G^{\circ\prime} = -16.7 \text{kJ mol}^{-1} (\Sigma 1) $ $ K' = 843 (\Sigma 1.5) $ $ \frac{c(\text{glucose } 6\text{-phosphate})}{c(\text{glucose})} = 7587 $	(0.5) (0.5) (0.5) (0.5) (0.5)
$AG^{\circ\prime} = -RT \cdot lnK'$ $K' = e^{-AG^{\bullet\prime}/RT}$ $= e^{16700 \text{ J/mol / (8.314 J/(mol K) \cdot 298.15 K)}}$ $= 843$ $K' = \frac{c(\text{glucose 6-phosphate}) \cdot c(\text{ADP}^{3-})}{c(\text{glucose 6-phosphate})}$ $= K' \cdot \frac{c(\text{ATP}^{4-})}{c(\text{ADP}^{3-})}$ $= 843 \cdot 2.25 \text{ mmol L}^{-1} / 0.25 \text{ mmol L}^{-1}$ $= 7587$ $AG^{\circ\prime} = -16.7 \text{ kJ mol}^{-1} \text{ (Σ 1)} \qquad K' = 843 \text{ (Σ 1.5)} \qquad \frac{c(\text{glucose 6-phosphate})}{c(\text{glucose})} = 7587 \text{ ($C(\text{glucose})$})$	(0.5) (0.5) (0.5) (0.5) (0.5)
$K' = e^{-3G^{\bullet}/RT}$ $= e^{16700 \text{ J/mol } / (8.314 \text{ J/(mol K)} \cdot 298.15 \text{ K})}$ $= 843$ $K' = \frac{c(\text{glucose 6-phosphate}) \cdot c(\text{ADP}^{3-})}{c(\text{glucose}) \cdot c(\text{ATP}^{4-})}$ $= K' \cdot \frac{c(ATP^{4-})}{c(ADP^{3-})}$ $= 843 \cdot 2.25 \text{ mmol L}^{-1} / 0.25 \text{ mmol L}^{-1}$ $= 7587$ $\Delta G^{\bullet\prime} = -16.7 \text{ kJ mol}^{-1} (\Sigma 1)$ $K' = 843 (\Sigma 1.5)$ $\frac{c(\text{glucose 6-phosphate})}{c(\text{glucose})} = 7587 (C(\text{glucose}))$	(0.5) (0.5) (0.5) (0.5)
$= e^{16700 \text{ J/mol } / (8.314 \text{ J/(mol K)} \cdot 298.15 \text{ K})}$ $= 843$ $K' = \frac{c(\text{glucose 6-phosphate}) \cdot c(\text{ADP}^{3-})}{c(\text{glucose}) \cdot c(\text{ATP}^{4-})}$ $= K' \cdot \frac{c(ATP^{4-})}{c(ADP^{3-})}$ $= 843 \cdot 2.25 \text{ mmol L}^{-1} / 0.25 \text{ mmol L}^{-1}$ $= 7587$ $\Delta G^{\circ\prime} = -16.7 \text{ kJ mol}^{-1} \text{ (Σ 1)} \qquad K' = 843 \text{ (Σ 1.5)} \qquad \underline{c(\text{glucose 6-phosphate})}$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$ $= (2.25 \text{ mmol L}^{-1}) \cdot (2.25 \text{ mmol L}^{-1})$	(0.5) (0.5) (0.5) (0.5)
$K' = \frac{c(\text{glucose 6-phosphate}) c(\text{ADP}^{3-})}{c(\text{glucose}) c(\text{ATP}^{4-})}$ $\frac{c(\text{glucose 6-phosphate})}{c(\text{glucose})} = K' \cdot \frac{c(ATP^{4-})}{c(ADP^{3-})}$ $= 843 \cdot 2.25 \text{ mmol L}^{-1} / 0.25 \text{ mmol L}^{-1}$ $= 7587$ $\Delta G^{\circ \prime} = -16.7 \text{ kJ mol}^{-1} (\Sigma 1)$ $K' = 843 (\Sigma 1.5)$ $\frac{c(\text{glucose 6-phosphate})}{c(\text{glucose})} = 7587 (C(\mathbb{C}))$	(0.5) (0.5) (0.5) (0.5)
$K' = \frac{c(\text{glucose 6-phosphate}) \cdot c(\text{ADP}^{3-})}{c(\text{glucose}) \cdot c(\text{ATP}^{4-})}$ $\frac{c(\text{glucose})}{c(\text{glucose})} = K' \cdot \frac{c(ATP^{4-})}{c(ADP^{3-})}$ $= 843 \cdot 2.25 \text{ mmol L}^{-1} / 0.25 \text{ mmol L}^{-1}$ $= 7587$ $\Delta G^{\circ\prime} = -16.7 \text{ kJ mol}^{-1} (\Sigma 1)$ $K' = 843 (\Sigma 1.5)$ $\frac{c(\text{glucose 6-phosphate})}{c(\text{glucose})} = 7587 (C(\mathbb{C}))$	(0.5) (0.5) (0.5)
$\frac{c(\text{glucose 6-phosphate})}{c(\text{glucose})} = \frac{c(\text{glucose}) \cdot c(\text{ATP}^{4-})}{c(\text{ADP}^{3-})}$ $= 843 \cdot 2.25 \text{ mmol L}^{-1} / 0.25 \text{ mmol L}^{-1}$ $= 7587$ $\Delta G^{\circ \prime} = -16.7 \text{ kJ mol}^{-1} (\Sigma 1)$ $K' = 843 (\Sigma 1.5)$ $\frac{c(\text{glucose 6-phosphate})}{c(\text{glucose})} = 7587 (C)$	(0.5)
$\frac{c(\text{glucose 6-phosphate})}{c(\text{glucose})} = K' \cdot \frac{c(ATP^{4-})}{c(ADP^{3-})}$ = 843 · 2.25 mmol L ⁻¹ / 0.25 mmol L ⁻¹ = 7587 $\Delta G^{\circ \prime} = -16.7 \text{ kJ mol}^{-1} (\Sigma 1)$ $K' = 843 (\Sigma 1.5)$ $\frac{c(\text{glucose 6-phosphate})}{c(\text{glucose})} = 7587 (\Xi 1)$	(0.5)
$c(\text{glucose}) = K^{2} \cdot \frac{1}{c(ADP^{3-})}$ = 843 · 2.25 mmol L ⁻¹ / 0.25 mmol L ⁻¹ = 7587 $\Delta G^{\circ \prime} = -16.7 \text{ kJ mol}^{-1} (\Sigma 1) \qquad K^{\prime} = 843 (\Sigma 1.5) \qquad \frac{c(\text{glucose 6-phosphate})}{c(\text{glucose})} = 7587 (\Xi 1)$	(0.5)
= 7587 Δ G °' = -16.7 kJ mol ⁻¹ (Σ 1)	
$\Delta G^{\circ \circ} = -16.7 \text{ kJ mol}^{-1} (\Sigma 1)$ $K' = 843 (\Sigma 1.5)$ $\frac{\text{c(glucose 6-phosphate)}}{\text{c(glucose)}} = 7587 (\Xi 1.5)$	
o(gracoc)	
o(gracoc)	
5.4 a) Mass of ATP produced per day: (2	(Σ 1.5)
	points)
Energy available for ATP synthesis: $8000 \text{ kJ day}^{-1} \cdot 0.5 = 4000 \text{ kJ day}^{-1}$ Energy required for synthesis of ATP: 52 kJ mol^{-1} Amount of ATP produced: $4000 \text{ kJ day}^{-1} / 52 \text{ kJ mol}^{-1} = 76.9 \text{ mol day}^{-1}$	(0.5)
Mass of ATP produced: $76.9 \text{ mol day}^{-1} \cdot 503 \text{ g mol}^{-1} = 38700 \text{ g day}^{-1} = 38.7 \text{ kg day}^{-1}$	(1)
$m_{day-1} = 38.7 \text{ kg day}^{-1}$	
5.4 b) Mass of ATP in the human body: (1	l points)
Average lifetime: 1 day = 1440 min 1 min = 1440^{-1} day	(0.5)
Mass of ATP in the body: $38.7 \text{ kg day}^{-1}/(1440 \text{ min day}^{-1}) \cdot 1 \text{ min} = 26.9 \text{ g}$	(0.5)
$m_{body} = 26.9 g$	
5.4 c) What happens to the rest of the free energy? Mark one correct answer: (2	2 points)
It is used to reduce the entropy of the hedy	п
It is used to reduce the entropy of the body. It is released from the body in the O-H bonds of the water molecule and the C=O bonds of the carbon dioxide molecule.	
It is used to regenerate the state of the enzymes which act as catalysts	_
in the production of ATP.	
	_

5.5 a) How many protons are in a spherical mitochondrium with a diameter of 1 μ m at pH=7?

(2 points)

$$V = 4/3 \pi r^3$$

$$= 4/3 \pi (0.5 \cdot 10^{-6} \text{ m})^3$$

=
$$4/3 \pi (0.5 \cdot 10^{-6} \text{ m})^3$$

= $5.2 \cdot 10^{-19} \text{ m}^3$ = $5.2 \cdot 10^{-16} \text{ L}$ (0.5)

$$c = 10^{-7} \text{ mol L}^{-1}$$
 (0.5)

$$n = V \cdot c \cdot N_A \tag{0.5}$$

=
$$5.2 \cdot 10^{-16} \text{ L} \cdot 10^{-7} \text{ mol L}^{-1} \cdot 6.022 \cdot 10^{23} \text{ mol}^{-1} = 31$$
 (0.5)

n = 31

5.5 b) How many protons have to enter a mitochondrium?

(2 points)

Number of ATP molecules:

$$n(ATP) = \frac{m(ATP) \cdot N_A}{M(ATP)} = \frac{0.2 \cdot 10^{-15} g \cdot 6.022 \cdot 10^{23} mol^{-1}}{503 \ g \ mol^{-1}} = 239400 \tag{1}$$

Number of H⁺ per cell
$$n(H_{per cell}^+) = n(ATP) \cdot 3 = 718300$$

Number of H⁺ per mitochondrium:
$$n(H_{mit}^+) = n(H_{percell}^+)/1000 = 718$$

$$n(H^{+}_{mit}) = 718$$

6,

Student code:

6.1 Structure of A only:

(2 points)

[A]:

6.2 Structures of D1, D2 only:

(2 points)

D1:

D2:

alternatively, the following structures are also correct:

Note: The two compounds are enantiomers

6.3 Correct structure of B (circle only one):

(4 points)

1 2 3 4 5 6

Notes: The Diels-Alder reaction gives products with an endo-stereochemistry. The preference of this configuration was outlined in problem 6.2, structure **C**. As shown in structure **C** this endoconfiguration is characterized by the two H atoms and the CH₂-bridge of the bicyclic system being on the same side of the ring. Only structures **1** and **2** of the six stereoisomers have an endo, endo stereochemistry. All other isomers have at least one exo configuration. In structure **1** the three rings form a U-shaped molecule which is sterically more hindered than structure **2** which has a zig-zag structure.

2 points are given for answer 1.

6.4 Decide the questions concerning the Diels-Alder reaction.	true	false	(6 points)
		14.00	possible
The Diels-Alder reaction is reversible The formation of B in the original reaction is	X		
thermodynamically controlled		x	
B is thermodynamically more stable than E		X	
E is thermodynamically less stable than F	X		
G is an enantiomer of B		Х	
G is thermodynamically more stable than F			Х
6.5 Structures of I, K, L only:			(6 points)
ı K		L	
O CO_2Me CO_2Me CO_2Me			OMe OMe CO ₂ Me
(2)		(2)	
Notes:			
from the initial olefin after loss of MeOH	1e		
CO_2Me CO_2Me	OMe <u> </u>	\Rightarrow $\left(\right.$	X K CO ₂ Me
$C_{13}H_{16}O_3$ diene must result from los s of CO_2 product from the initial DA cyclohexene adduct $C_{15}H_{20}O_6$			X = CO ₂ C ₁₁ H ₁₂ O ₄ be a 1,3-diene
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CO ₂ Me <u>-</u> CO ₂ Me	from Mic	CO ₂ Me utomer chael Addition with tent loss of MeOH

7.1 Fill in < or > (A < B means A has a priority lower than B):

(3 points)

(4 points)

1 point each

7.2

*: 0.25 points each

S: 0.75 points each

 Σ : 2 points

highest priority

west	

ОН	CH(NHCH₃)CH₃	Ph	Н	(1)
NHCH₃	CH(OH)Ph	CH₃	Н	(1)

(Penalty: each wrongly indicated stereocenter, minus 0.5 point)

7.3 Newman projection or sawhorse projection of 1: Fischer projection of 1:

$$(Me = CH_3)$$

0.5 points for each correct stereocenter.

 $(Me = CH_3)$

1 point for each correct stereocenter. Any projection which shows the correct stereo-(1 point) center is accepted. (2 points)

7.4 Equation with oxidation numbers and stereochemically correct structure of 2: (4 points)

- 1 point for structure 2, 1 point for stoichiometry, 2 points for oxidation numbers (0.5 points for each)
- 7.5a) Structure of 3 (correct stereochemistry):

ŌН NHCH₃

1 point for correct formula, 1 point for correct stereochemistry

7.5b) Statements concerning isomers:

(2 points)

(2 points)

true false 1 and 3 are stereo-isomers Х 1 and 3 are enantiomers Х 1 and 3 are diastereomers Х

7.5c) Draw a structural model to rationalize the exclusive formation of 3 from 2

1 and 3 are conformational isomers

(3 points)

0.5 points each

Notes: Attack of hydride occurs from the sterically least hindered side.

Full points will also be given for an explanation using the formation of a hydrogen bond.

1 point will be given for any representation indicating the attack of hydride on the correct face of the carbonyl group, i.e.

Name:

Student code:

8.1 pH of solution B:

(3 points)

$$K_{b2} = \frac{c(HCO_3^-)/(1 \ mol \ L^{-1}) \cdot c(OH^-)/(1 \ mol \ L^{-1})}{c(CO_3^{2-})/(1 \ mol \ L^{-1})}$$
(1)
$$K_{b2} = \frac{10^{-14}}{10^{-10.33}}$$

$$K_{\rm b1} = 2.34 \cdot 10^{-8}$$

Since $K_{b2} >> K_{b1}$, only one protonation step of the CO_3^{2-} has to be considered.

$$c(HCO_3) = c(OH) = x$$

$$c(CO_3^{2-}) = c_0(CO_3^{2-}) - x$$

$$c_0(Na_2CO_3) = \frac{1.700 \ g \ L^{-1}}{105.99 \ g \ mol^{-1}}$$

$$c_0(Na_2CO_3) = c_0(CO_3^{2-}) = 0.016 \text{ mol } L^{-1}$$
 (0.5)

$$K_{b2} = \frac{x^2 /(1 \text{ mol } L^{-1})}{(c_0 (CO_3^{2-}) - x)}$$
 (1)

$$x = c(OH^{-}) = 1.75 \cdot 10^{-3} \text{ mol } L^{-1}$$

Solving equation: 0.5 points

pH = 11.2

8.2 Ca(OH)₂, CaCO₃ in the precipitate?

(6 points)

$$pH = 10^{\circ}, c(OH^{-}) = 10^{-4} \text{ mol } L^{-1}$$

$$c_0(Na_2CO_3) = \frac{1.700 \ g \ L^{-1}}{105.99 \ g \ mol^{-1} \cdot 2}$$

$$c(CaCl2) = \frac{1.780 \ g \ L^{-1}}{110.98 \ g \ mol^{-1} \cdot 2}$$

$$c_0(Na_2CO_3) = 8.0 \cdot 10^{-3} \text{ mol L}^{-1}$$
 (0.5)

$$c(CaCl_2)$$
 = $c_0(Ca^{2+})$ = 8.0·10⁻³ mol L⁻¹ (0.5)

Calculations for Ca(OH)₂:

$$c(OH^{-})^{2} \cdot c_{0}(Ca^{2+}) = 8 \cdot 10^{-11} \text{ mol}^{3} \text{ L}^{-3} < 6.46 \cdot 10^{-6} \text{ mol}^{3} \text{ L}^{-3} = K_{sp}(Ca(OH)_{2})$$

no precipitate

(0.5)

Calculations for CaCO3:

(regarding proteolysis: 1 point)

$$\mathsf{K}_{\mathsf{b2}} \! = \, \frac{c(HCO_3^-) \cdot c(OH^-)}{c(CO_3^{2-})} \, ,$$

$$c(HCO3) = \frac{K_{b2}}{c(OH^{-})} \cdot c(CO32)$$

$$c(HCO_3^-) = 2.14 \cdot c(CO_3^{2^-})$$

$$c(HCO_3^-) + c(CO_3^{2-}) = c_0(Na_2CO_3)$$

$$2.14 \cdot c(CO_3^{2-}) + c(CO_3^{2-}) = 8.0 \cdot 10^{-3} \text{ mol } L^{-1}$$

(1)

Initial concentration of CO_3^{2-} in solution C: $c(CO_3^{2-}) = 2.55 \cdot 10^{-3} \text{ mol L}^{-1}$

$$(CO_3^{2^2}) = 2.55 \cdot 10^{-3} \text{ mol L}$$

(0.5)

Initial concentration of Ca^{2+} in solution C: $c(Ca^{2+}) = 8.0 \cdot 10^{-3} \text{ mol } L^{-1}$ hence $c(CO_3^{2+}) \cdot c(Ca^{2+}) = 2.04 \cdot 10^{-5} \text{ mol}^2 \text{ L}^{-2} > 3.31 \cdot 10^{-9} \text{ mol}^2 \text{ L}^{-2} = \text{K}_{sp}(CaCO_3)$

$$c(Ca^{2+}) = 8.0 \cdot 10^{-3} \text{ mo}$$

precipitate

(0.5)

Ca(OH)₂ will be found in the precipitate will be found in the precipitate

yes □ yes x

no x no 🗆

CaCO₃

82

Student code:

8.3 Circle the block that attaches to the CaCO₃ crystal:

(1 point)

Notes: Both polymer blocks are hydrophilic. The acrylic acid block will preferably bind to the crystal since it is more polarized and additionally charged. The polymer binds to the surface at positions where there is an excess of calcium ions on the surface of the ionic crystal.

8.4 How much of the initial amount of polymer (2 g) can still be found in the hybrid particles? (7 points)

$$RCOOH + OH^{-} \longleftrightarrow RCOO^{-} + H_2O$$
 $pK_b = 9.12$

$$c(COO^{-}) = x$$
 $c(COOH) = c_0(COOH) - x$ $x = c_0(OH^{-}) - c(OH^{-})$ (1)

$$c_0(OH^-) = \frac{50 \text{ mL}}{250 \text{ mL}} 0.19 \text{ mol } L^{-1}$$
 $c_0(OH^-) = 0.038 \text{ mol } L^{-1}$

$$c(OH^{-}) = 10^{-1.7} \text{ mol } L^{-1} = 0.02 \text{ mol } L^{-1}$$
 (0.5) $x = 0.018 \text{ mol } L^{-1}$ (0.5)

$$K_b = \frac{(c_0(COOH) - x)/(1 \ mol \ L^{-1}) \cdot c(OH^-)/(1 \ mol \ L^{-1})}{x/(1 \ mol \ L^{-1})}$$

$$c_0(COOH) = \frac{K_b x \cdot (1 \ mol \ L^{-1})}{c(OH^{-})} + x \qquad (1) \qquad c_0(COOH) = \left(\frac{0.018 \cdot 10^{-9.12}}{0.02} + 0.018\right) mol \cdot L^{-1}$$

$$c_0(COOH) = 0.018 \text{ mol} \cdot \text{L}^{-1}$$

(Or as pH >> pK_a:
$$c_0(COOH) = c(COOH) + x \approx x$$
)

(calculate polymer mass from c₀(COOH): 0.5 point)

Total concentration of polymer chains
$$c(polymer) = \frac{c_0(COOH)}{8}$$
 (0.5)

$$M(polymer) = M(C_{160}O_{84}H_{306}) = 3574.66 \text{ g mol}^{-1}$$

$$(0.5) \qquad (0.5)$$

$$m(polymer) = c(polymer) \cdot V \cdot M(polymer) \qquad (0.5)$$

m(polymer) =
$$\frac{c_0(COOH) \cdot V \cdot M(polymer)}{8} = \frac{0.018 \cdot 0.250 \cdot 3574.66}{8}g = 2.0 g$$
 (0.5)

8,

Student code:

8.5 Modification of CaCO₃:

(5 points)

The charge of the particles is caused by the number of protolized COOH groups per particle. $c(COO^{-}) \approx c_0(COOH)$, $\alpha \approx 1$

$$N_{COOH} = \frac{|Z|}{\alpha} \qquad N_{COOH} = 800 \tag{1}$$

$$N_{\text{polymer}} = \frac{N_{COOH}}{8} = 100 \tag{1}$$

The number of polymers per particle indicates the mass of polymer per particle. Thus, the mass of the calcium carbonate particle can be calculated:

= M (total particle) –
$$N_{polymer} \cdot M(polymer)$$
 (1)

$$= 8.01 \cdot 10^8 \text{ g mol}^{-1} - 100 \cdot 3574.66 \text{ g mol}^{-1}$$

$$= 8.01 \cdot 10^8 \text{ g mol}^{-1}$$

Mass of one CaCO₃ particle:
$$m(CaCO_3particle) = M (CaCO_3 particle) \cdot N_A^{-1}$$
 (0.5)

and with the volume of the spherical particle (V = $\frac{4}{3} \cdot \pi \cdot r^3$) the density can be calculated:

$$\rho(\text{CaCO}_3) = \frac{m(\text{CaCO}_3 \text{ particle})}{V(\text{CaCO}_3 \text{ particle})} = \frac{3 \cdot m(\text{CaCO}_3 \text{ particle})}{4\pi \cdot r^3}$$

$$\frac{4\pi \cdot r^3}{4\pi \cdot r^3} \tag{1}$$

$$= \frac{3(M \text{ (total particle)} - N_{polymer} \cdot M(polymer))}{N_a \cdot 4\pi \cdot r^3}$$

$$= \frac{3 \cdot 8.01 \cdot 10^8 \text{ g mol}^{-1}}{N_{\Delta} \cdot 4\pi (5 \cdot 10^{-6} \text{cm})^3} = 2.54 \text{ g cm}^{-3}$$
 (0.5)

The modification of calcium carbonate is

Calcite □

Vaterite x

Aragonite □